

Ibb

Deuterium Retention in and Release from Beryllium Resulting

from High Flux Plasma Exposure

T. Schwarz-Selinger^a, M. Oberkofler^a, H. Xu^b

R. Doerner^c and the PISCES Team^c

^aMax-Planck-Institut für Plasmaphysik, 85748 Garching, Germany ^bGeneral Atomics, San Diego, CA 92121, USA ^cUniversity of California San Diego, CA 92093, USA

13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications / 1st International Conference on Fusion Energy Materials Science

T Retention in pure Beryllium

implantation: saturation at low levels

> codeposition: unlimited

main wall erosion dominated, but:

- gaps are potential deposition zones!
- resessed wall elements

⇒ assessing T removal by baking at 240°C / 350°C

ITER baking temperatures

240°C (main wall) 350°C (divertor)

K. Sugiyama et al., PSI-19 (doi:10.1016/j.jnucmat.2010.09.043):

Here:

 \Rightarrow thick codeposits

 \Rightarrow is removal efficiency increased for longer hold times?

(is release determined by diffusion or by trap/bond energies)

Deuterium Retention in and Release from Beryllium Resulting from High Flux Plasma Exposure

- single / multilayer co-deposits
- high flux codeposit
- implanted Be
- > model system: magnetron sputtered D/Be

DC reflex-arc discharge within airtight Be enclosure

+ up to 30 identical samples at a time

D release from multilayer codeposits

Present predictions for T release in ITER are based on <u>pure Be</u> targets / codeposits.

Actual ITER codeposits will be multilayers with BeO interfaces in between.

Question: Do BeO layers influence the D release?

Diffusion barrier? Shift in release temperature?

- <u>here:</u> collecting PISCES-B on W witness
 - interrupted exposure for several hours / bring to air to allow an oxide layer to grow

experiment: low flux codeposit

- single layer: Be target + cap, bias = -100V \Rightarrow E_D = 22 eV Γ = 1.2 · 10¹⁴ Be/cm⁻²s⁻¹, t = 10000 sec

W

W

experiment: low flux codeposit

- single layer: Be target + cap, bias = -100V \Rightarrow E_D = 22 eV Γ = 1.2 · 10¹⁴ Be/cm⁻²s⁻¹, t = 10000 sec

comparing different codeposits

IPP

collecting Be and D (on W) sputtered/reflected from a Be target:

thermal desorption:

collecting Be and D (on W) sputtered/reflected from a Be target:

thermal desorption:

high flux codeposit: collecting Be and D at floating target in Be seeded D discharge

thermal desorption:

retention during net erosion:

thermal desorption:

collecting Be/D sputtered from a Be target in Ar/D_2 :

thermal desorption:

\Rightarrow the total amount of D retained above 350°C is the similar for all codeposits investigated:

ρ ≈·10¹⁷ D cm⁻² / μm

(D/Be ≈ 1%)

D release from thick codeposits during long holds @ 240°C (510K) and 350°C (620K)

D release from magnetron sputtered D/Be @ 240°C

IPP

University of California San Diego

time constant of hours!

extrapolating to 690 m² ITER main wall: 9 g D per µm remains after 24h @ 240°C

time constant of hours!

extrapolating to 690 m² ITER main wall: 2.5 g D per µm remains after 24h @ 350°C

CRDS-code ("coupled reaction diffusion system" by Matthias Reinelt*) = flexible code for simulation of such systems

Simple model: diffusion coupled with de-trapping (and re-trapping) from binding sites

implemented mechanisms:

- diffusion of D through BeD with
- trapping and de-trapping of D at 2 binding sites (one with, one without re-trapping)

CRDS-code ("coupled reaction diffusion system" by Matthias Reinelt*) = flexible code for simulation of such systems

Simple model: diffusion coupled with de-trapping (and re-trapping) from binding sites

implemented mechanisms:

- diffusion of D through BeD with
- trapping and de-trapping of D at 2 binding sites (one with, one without re-trapping)

modeling D release with diffusion and trapping

Iniversity of California San Die

discussion of the fit:

- although ramp better described
- hold @ 240°C: model incorrectly predicts too much desorption during the hold

 \Rightarrow analysis of independent measurements simultaneously

modeling D release with diffusion and trapping

present status:

ity of California San Die

- ramp and hold desorption behavior fairly well reproduced
- model shows sharper desorption peaks than observed in experiment
- outgassing above 450°C to fast in simulation
 - \Rightarrow tool to interpolate

Next step: implementing decomposition

- ⇒ magnetron sputtered Be/D films are suited as a model system to study retention and release
- ⇒ release of D from Be at 240°C and 350°C has a very large time constant
- ⇒ even a several hours bake at 240°C or 350°C does not release all D (a D/Be of 0.8% or 0.2% remains, respectively) (deeper trap sites that cannot be drained)
- ⇒ codeposits grown in different ways (energies, growth rates) show similar release features
- ⇒ the total amount of D released above 350°C is the same for all codeposits investigated, equivalent to D/Be ≈ 1%
- ⇒ multilayer codeposits show the same release as single layer codeposits (BeO interface is no transport barrier)

PISCES team:

Russ Doerner Matt Baldwin Daisuke Nishijima Timo Dittmar Jonathan Yu Tyler Lynch Karl Umstadter Ray Seraydarian Leo Chousal Rolando Hernandez