

Deposition and Qualification of Tungsten Coatings Produced by Plasma Deposition in WF₆ Precursor Gas

V.Philipps ^a, A.K. Sanyasi^c, D. Kogut^a, F. Nachtrodt^b, H.G.Esser^a, M. Zlobinski^a, J. W. Coenen^a, S. Brezinsek^a

^a Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Jülich, Germany ^b Gemeinschaftslabor für Elektronenmikroskopie, RWTH Aachen, Germany ^c Institute for Plasma Research, Bhat, Gandhinagar – 382428, India

Tungsten is the plasma facing candidate for future fusion devices

Additional R&D needed to

- Qualify tungsten under high power loads (cracking, fatigue, melting)
- Develop W materials with improved ductility and reduced grain grow
- Study further the compatibility with all plasma scenarios and heating schemes

Aim of the work

Develop an in situ method to deposit W- coatings on the first wall of fusion devices

Provide an environment to study W- PFCs with all plasma scenarios and heating schemes.

 \rightarrow Discussion ongoing on the need for a full W wall in JET and ITER, also for EAST and JT60-SA \rightarrow to qualify W for DEMO

Main chamber: 3-5 µm (PVD) Divertor: 10 µm (PVD+ CMSII) **JET ILW experiment**

V. Philipps, 13th PFMC Workshop , Rosenheim, Germany, May 2011

WF₆ as precursor gas

WF₆ is used for chemical vapour deposition (CVD) by thermal decomposition at hot surfaces (400-800°C)

WF₆ has also been used in lab experiments for plasma assisted W deposition (e.g. A. Cambe, E. Gauthier , J. Nuc.Mat (2001) 331)

Plasma deposition method like boronisation/ siliconisation used in present tokamaks

Approach

- **1.** Define the deposition process parameters
- 2. Coating properties : density , purity, adhesion, heat flux and thermal shock capability
- 3. Identify and minimise the (negative) role of Fluor
- 4. Large scale deposition experiment
- 5. Injection of (smaller) amounts of WF₆ in TEXTOR

6. Pilot experiment of in situ W coating in TEXTOR

Coating Process

RF – assisted DC glow in 95% H_2 & 5% WF_6

RF Power: 60 W, Bias Voltage: 200 – 300V, Substrate Temp: 200 C, Pressure: 0.06 mbar, Plasma Exposure: up to 5 hours

Samples: Silicon, Stainless steel, Graphite(EK98)

Promising W coatings have been obtained on small scale samples

steel

silicon

graphite

Deposition rate : 95 nm / hr.

Coatings up to 0.5 µm achieved

≈ 5 h operation, no physics limit identified

Coating properties

Optical microscopy

SEM

Element analysis

SEM on cross section

Coating properties (2)

Layer analysis by Electron induced X- ray emission Beam energy: 7 keV (range ≈ 100 nm), 25 keV (2µm)

W layer with few impurities, some oxygen , free of Fluor

Beam energy : 7.5keV

C-signal (green spots) W-signal (red spots)

 \rightarrow no closed coverage, due to surface porosity

Heat flux resistance

Test of coatings (on C, EK98) in e-beam JUDITH facility in ELM-like tests, up to 160 MW/m², 1ms

 \rightarrow no visible damage (no further detailed analysis done)

 \rightarrow further ELM like tests in laser heating

Laser ELM simulation

LASER Penetration: 22 nm

- No visible damage (buckling or cracking) up to 500 MW/m²
- > 600 MW/m2 : surface roughing and start of melting on some spots
- Larger melting at 700 MW/m²

Calculated temperature using bulk W data: 1500 K \rightarrow heat conductivity of layer and /or heat transfer to graphite reduced

V. Philipps, 13th PFMC Workshop , Rosenheim, Germany, May 2011

Exposure on TEXTOR testlimiter, comparison with bulk W

W bulk plate

W coated C • Temperature excursions up to 3000C (poor contact of plate to graphite holder)

- No visible damage of W layer
- Slightly reduced W erosion

Larger surface roughness of W coating lead to increased redeposition on rough structures

Injection of WF6 in TEXTOR

Study W migration

Study WI line emission

Study the impact of Fluor on plasma behaviour and operation

7 WF6 injections with 3 x 10^{19} WF₆ Each: 2 · x 10^{20} WF₆ molecules

WI at 400.8 nm

FI at 696.6 nm

Fluor main plasma line (53,521nm)

Deeper penetration of Fluor & larger memory effect

Post mortem analysis of deposited W layer

(RBS, SIMS, EPMA)

Local deposition of a "pure " W layer with low amount of Fluor

Small W local deposition efficiency

(about 1 % of W found on plate, 30% found on main TEXTOR limiter after immediate TEXTOR)

Fluor plasma impurity lines reach background line intensities in about 10 shots

Fluor impurity behaviour in TEXTOR

5 shots days in TEXTOR with strong WF6 injection

No particular effect on long term behaviour of line integrated Fluor VI line emission

Large scale W coatings from Wf₆ for TEXTOR application

Large vacuum Test Facility

Represents one octant of the TEXTOR tokamak

Volume ~ 2.1 m3

standard TEXTOR configuration Antenna with 13.56 MHz RF generator with inductive coupling (Anode) + DC voltage to wall (cathode)

New arrangement: Direct capacitive coupling of RF to large sample holder + bias of -100...-500V DC potential

attracts the ions to the holder and prevents coating of walls

TEST coating with WF6 : Sample arrangement

Test coatings with CH₄ showed only deposition on the orschungszentrum sample holder and no deposition on the walls

Target holder with capacitive RF + DC bias

RF power = 100 W DC= -110 V Sample current 45 mA 23 uA/cm2

Higher oxygen content in first experiments,

Improved by better wall conditioning of system

V. Philipps, 13th PFMC Workshop, Rosenheim, Germany, May 2011

Summary

W layers have been deposited on graphite by plasma deposition in WF_6 and H_2

Layers with sufficient purity and very low amount of Fluor have been deposited with good adhesion on graphite and promising thermal shock behaviour

Injection of smaller amount of WF6 in running Tetxor shots has resulted in local deposition of pure W layers

Increased Fluor plasma contamination disappeared in less then 20 shots

In a new RF deposition arrangement, local deposition of an C film was achieved with no deposition on the rest of the wall

RF plasma deposition of W layers with DC ion acceleration on graphite appears a promising technique for in situ local W coating of wall tiles

Further optimisation ongoing

Preparation for TEXTOR W coating ongoing