Nanoindentation of Tungsten for Nuclear Fusion Applications

David E.J. Armstrong Xiaoou Yi Angus J. Wilkinson Steve G. Roberts FEMaS1&PMFMC13

Materials issues for fusion power

- First Wall
- Breeder blanket
- Structural materials
- Divertor
 - Key component for removal of He "ash"
 - 14MeV neutrons 20-50dpa/year
 - Helium -10-15appm/dpa
 - Hydrogen 40-50appm/dpa
 - Temperature 775-3475K
 - Tungsten has potential for both plasma facing and structural roles

Why tungsten alloys?

- Neutron damage causes chemical and microstructural changes
- Brittle σ–phases can be formed
- W-Re-Os alloys are highly expensive - bulk samples not available
- Tungsten is brittle at RT
- Formability is a problem
- Re alloying additions can improve ductility
- Can other elements?

Data from Cottrell, Journal of Nuclear Materials, 334, pg 166, 2004

Element	W	Re	Os
	At%		
0 years	100	0	0
2.5 Years	95.4	1.7	0.5
5 years	91	5.1	3.9

Neutron damage

1-100 displacements per atom100's ppm heliumTransmutation radioactivityLarge penetration depths

Test Reactor But... •Expensive •Slow •Radioactive

Simulating neutron damage

Simulating neutron damage

- Implantations carried out at National Ion Beam Centre, University of Surrey, UK
- Temperature 400°C
- Single energy @ 2MeV
- Doses: (rate≈3dpa/hour)

Dose (Ion/cm ²)	DPA	Temp °C
5.5×10^{12}	0.07	400
3.3×10^{13}	0.4	400
$1.05 \mathrm{x} 10^{14}$	1.2	400
$1.0 \mathrm{x} 10^{15}$	13	400
2.5×10^{15}	33	400

TEM of Implantation Damage

1.2 dpa W5Re

33 dpa UHP W

TEM analysis X. Yi Oxford Materials Poster 55B

Nanoindentation

- Basic nanoindentation carried out on implanted samples
- Modulus and hardness calculated as a function of depth
- Poorly defined strain field makes interpreting results difficult
- EBSD used to find implanted region
- Implanted materials include, pure tungsten and W5Re and W5Ta alloys

Nanoindentation results -W

Nanoindentation results - WX

AFM Scans 200nm indents - W

AFM Scans- W x dpa

Nanoindentation results 200nm indents - W

Nanoindentation results 1000nm indents - W

Nanoindentation results 1000nm indents - W

"Nano" cantilevers?

- Can we machine cantilevers into the implanted layer?
- Work in progress.....
- Some success in FeCr alloys
- Deeper implantation depths soon

FeCr Micro Pillars

- Pillars machined into the ion implanted layers, using multi stage approach
- Width approx 500nm
- Height 3μm
- Flat Punch type nanoindenter tip used to compress the pillars

D.E.J Armstrong 2010

FeCr Micro Pillars

FeCr Micro Pillars

Summary and Future Work

- Nanoindentation alloys differences in hardness measured
- Only small volumes of materials needed for many results
- Doesn't tell us about yield stress, work hardening rates
- Substrate effects need explaining

2011 and Beyond

- Nanoindentation alloys differences in hardness measured
- Only small volumes of materials needed for many results
- Doesn't tell us about yield stress, work hardening rates
- Substrate effects need explaining

- Problems in working in such small specimens
- Are the results representative of bulk samples?
- Contact area problems
- Modelling and experimental work is ongoing to further understand these results
- High temperature tests
 now being developed

Thanks to

- CCFE for Fellowship Funding
- National Ion Beam Facility for Access
- Andy Bushby, Sergei Dudarev Michael Rieth, Emmanuelle Marquis and Reinhard Pippan for useful discussions

