13th PFMC Workshop 2011.5.12

In-situ measurement of hydrogen isotope retention
using high heat flux plasma generator
with ion beam analysis

M. Yamagiwa*, Y. Nakamura, N. Matsunam,
N. Ohno, S. Kajita, M. Takag,

Nagoya University, JAPAN

M. Tokitani, S. Masuzaki, A. Sagara, K. Nishimura
NIFS, JAPAN



OQOutline of this talk

e Background

e Motivation

Dynamic retention and related issues
Previous studies and technical issues

e Experimental

Newly developed experimental device: PS-DIBA

 Experimental Results
In-situ measurement by using PS-DIBA

e Summary



Static and dynamic retention

=) - Retention within the material by the effect

Deuterium | g of the hydrogen flux.
Plasma

-The hydrogen atoms have the mobility in
the materials, so that they can be released
from PFC after plasma termination.

During exposure

.................................................................. Dynamlc Retentlonistatlc Retentlon

End of plasma exposure
Ml Static Retention

=) - The hydrogen atoms are trapped in atomic
. . vacancies, voids, dislocation loops and
. . crystal grain boundary, and sometimes

retained as hydrogenated products.

-Those hydrogen atoms are trapped in the
material and not released even after the
plasma termination.



Background

* The dynamic retention leads to several effects, such as
hydrogen recycling and net erosion of plasma-facing surfaces.

Important issues related to dynamic retention

- Optimization of fueling
- Flux dependence of chemical sputtering

In-situ measurement of hydrogen retention
during plasma exposure is necessary.

 However, these phenomena remain relatively poorly
understood, primarily due to the lack of proper plasma-
surface analyses except for a few devices.



Previous studies for in-situ measurement

Plasma ¢

lon energy

Electron tem

Electron dens

Sample tem

lon flux(Z;

Samp

lon beam :

Dynamic r
[1] B

deuterium areal density [ 1016 D/cm2 ]

5

0

[_ Graphite

Dynamic retention

: L) N T S | I - | A [

0 100 200 300 400
time [ minutes ]

500

For next step PWI studies
Relevant to divertor condition s n_~101°20m-3 and T.<10 eV
ITER divertor materials == tungsten (W)

600

RF helicon|[3]

10-500

1-10

<1017-1018

300-800

1020-1022

molybdenum

\RA,RBS,ERD

25% up

Wright JNM2007



Purpose of this study

We have developed a new device Plasma Surface Dynamics
with lon Beam Analysis (PS-DIBA) to investigate the
dynamic interaction property using Nuclear Reaction Analysis
(NRA) and Rutherford Back-Scattering (RBS).

<& Compact and powerful | DC discharge using
plasma source lanthanum hexaboride (LaBg)

"ITER R&D tungsten

O Samples -isotropic graphite (1G-110U)

In this presentation

& Novel compact DC plasma source
& Plasma-compatible ion beam assemblies

€ In-situ measurement of deuterium retention using PS-DIBA



Plasma Surface Dynamics with lon Beam Analysis
(PS-DIBA)
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1) Compact and powerful plasma source
i) Differential pumping to protect detectors and Van de Graaff accelerator
i) lon beam monitoring system during plasma exposure



Novel compact and powerful dc plasma source
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- Zigzag-shaped LaBg; cathodes heated by
direct Joule heating.
=) Efficient heating (1600 K at 730 W)
- Magnetic field is inclined to two cathode

surfaces at a shallow angle.
=) | arge effective cathode area
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Radial profiles of the electron density n, and
temperature T,

Detector chamber
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Discharge power dependences of the electron density n,
and temperature T, at a center of plasma column
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Differential pumping to protect detectors and Van de Graaff
1) Without films
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lon beam monitoring system during plasma exposure

It is impossible to measure the ion beam current at samples during plasma exposure.

To monitor the beam current, a rotating gold plate (Au) was
installed in the beam line as a beam chopper.
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-Beam fluence [uC] at target is proportional to
monitor yield [Counts] by Au plate.

- Capable of measuring ion beam fluence
during plasma irradiation
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Time dependence of deuterium retention of isotropic graphite

sample:isotropic graphite (1G-110U)
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-Decreased by ~20 % just after the end of plasma irradiation = 31+41n]

=Dynamic retention
- Deuterium retention decreases slowly after plasma termination.



Deuterium retention of tungsten during plasma exposure
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Deuterium retention of tungsten after

plasma termination
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-Decay time could be different depending
on manufacturing methods for W.

Decay time = 4.0£0.8 [h]

Decay time of deuterium
retention of ITER R&D W is
much shorter than that of
isotropic graphite (IG-110U).

 Need to care about
post-measurement of
deuterium retention of W.
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Summary

Plasma Surface Dynamics with lon Beam Analysis (PS-DIBA) device
developed to investigate the dynamic retention during deuterium
plasma exposure.

Novel dc plasma source by using direct heated lanthanum hexaboride
(LaB6) cathode can generate high density deuterium plasma with an
electron density of 4.5 X% 108 m-3,

Deuterium retention on W and graphite targets was investigated during
and after plasma irradiation.

Deuterium retention of the isotropic graphite (1G-110U) increased just
after the plasma irradiation started, and was almost constant during the
irradiation. It decreased by approximately 20 % just after the end of
plasma irradiation and slowly decreased with a decay time of 30 hours.

The deuterium retention of ITER R&D tungstens mainly determined by
sample temperature. Decay time of deuterium retention of ITER R&D
W (4 hours) is much shorter than that of isotropic graphite. On the other
hand, the decay time of PM-W could be longer than that of ITER R&D
W, meaning the decay time depends on its manufacturing method.






Previous studies for in-situ measurement
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