Tungsten and carbon based PFCs erosion and eroded material deposition under ITER-like ELM and disruption loads at the plasma gun facility QSPA-T

N. S. Klimov^{a,*}, V. L. Podkovyrov^a, <u>D. V. Kovalenko^a</u>, A. M. Zhitlukhin^a,
V. A. Barsuk^a, L. B. Begrambekov^b, P. A. Shigin^b, I. V. Mazul^c, R. N. Giniyatulin^c,
V. Ye. Kuznetsov^c, J. Linke^d, I. S. Landman^e, S. E. Pestchanyi^e,
B. N. Bazylev^e, A. Loarte^f, B. Riccardi^g, V. S. Koidan^h

 ^aSRC RF TRINITI, Pushkovykh street, 12, 142190, Troitsk, Moscow Region, Russia ^bNRNU MEPHI, Kashirskoe shosse, 31, 115409, Moscow, Russia ^cEfremov Institute, 196641, St. Petersburg, Russia
 ^dForschungszentrum Jülich GmbH, EURATOM Association, D-52425 Jülich, Germany ^eKarlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany (KIT) ^fITER Organization, St. Paul-lez-Durance, F-13108 Cadarache, France
 ^gFusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona, Spain

hRRC «Kurchatov Institute», Moscow, Russia

- This activity is carried out under collaboration between European Union and the Russian Federation and is directed to obtain the data for the empirical estimation of the PFC lifetime and to validate the available numerical models used to predict the erosion under the expected conditions in ITER.
- Experimental conditions
- Tungsten erosion (melting, crack formation)
- Erosion products investigation
- Summary

This work was supported by EFDA (05-994 Task 4), the ROSATOM (H.4a.52.03.10.1003), the Impuls- und Vernetzungsfond der Hemholtz Gemeinschaft e.V. and RFBR grant Nr.11-02-91322

Quasistationary plasma accelerator

QSPA-T facility

QSPA plasma parameters (ELMs):

 Heat load 	0.5 ÷ 5 MJ/m ²	
 Pulse duration 	0.1 ÷ 0.6 ms	
 Plasma stream diameter 	6 cm	
 Ion impact energy 	0.1 ÷ 1.0 keV	
 Electron temperature 	< 10 eV	
 Plasma density 	10 ²² ÷ 10 ²³ m ⁻³	
SPA facility provides adequate pulse durations and		

QSPA facility provides adequate pulse durations and energy densities. It is applied for erosion measurement in conditions relevant to ITER ELMs and disruptions

QSPA-Be facility

QSPA plasma gun

- 1 coil of pulse electromagnetic gas valve;
- 2 valve disk; 3 volume of pulse valve;
- 4 isolator; 5 gas supply tube;
- 6 cathode; 7 anode.

Scheme of PFCs testing under ELM-like heat load

High heat flux test facility TSEFEY-M (Efremov Institute)

Technical characteristics of the TSEFEY- M

 Controlled beam power 	1÷200 kW	TSEFEY-M facility allow to study of damages in
 Maximal beam current 	5A	various materials caused by abnormal high
 Maximum power density in beam 	1000 MW/m ²	surface heat loads (including short-pulse
 Controlled accelerating voltage 	0÷40kV	loads), thermal strength and thermocyclic life
 Total deflection angle 	±40°	time of multilayer structures at high
 Minimal beam diameter at 40kV acceleratin 	g voltage,	temperature gradients, the heat exchange
5A current, 1m distance to target	15 mm	intensification processes, when structures with
 Maximal density of the absorbed heat flux 	30 MW/m ²	one-sided surface heating are cooled by water
Distance from deflecting system to sample	0.6÷1.2 m	or gas.

Troitsk Institute for Innovation and Fusion Research

Target design (cooled mockup)

D. Kovalenko, SRC RF TRINITI

Plasma exposure + high heat flux testing

Experimental results

Plasma exposures + High heat flux testing

D. Kovalenko, SRC RF TRINITI

Plasma exposure + High heat flux test

D. Kovalenko, SRC RF TRINITI

Arising and remelted material peeling off

D. Kovalenko, SRC RF TRINITI

Types of cracks

D. Kovalenko, SRC RF TRINITI

Cracks width dynamics

D. Kovalenko, SRC RF TRINITI

Dust investigation PAN-fibers erosion of CFC

• PAN fiber damage is a main mechanism of CFC erosion under ELM-like and disruption-like plasma load

• Eroded material is deposited on the vacuum chamber and diagnostics windows in a form of carbon films

tute for Innovation and Fusion Research

Dust collectors

The modernized target vacuum chamber allow to place various dust collectors

Total number of collectors in the plasma pulse series (200 pulses) were 55 collectors of type I, 10 collectors of type II

Scheme of dust collectors placement

Typical view of the collector after deposition of CFC erosion products

Density of the film

Typical density varied in the range from 0.5 g/cm³ (flake-like films) to 2 g/cm³ (solid compact films).

D. Kovalenko, SRC RF TRINITI

Various dust films observed on the collectors at the QSPA-T

More detailed information about optical properties of the films were presented in poster presentation of I. Arhipov et al.

D. Kovalenko, SRC RF TRINITI

Optical microscopy of the dust film

D. Kovalenko, SRC RF TRINITI

Electron microscopy of the dust film

D. Kovalenko, SRC RF TRINITI

Thermodesorption spectroscopy obtained by using MICMA facility (MEPHI)

- Edges melting and cracks formation are the main tungsten erosion processes under plasma action at the heat loads up to 0.5MJ/m².
- The distance between newborn transversal (primary) cracks is 300-500 µm. The width of transversal cracks increases with number of plasma pulses. The maximum width value after 500 pulses is less than 20 µm.
- The width of transversal cracks significantly increases after high heat flux testing (HHFT) up to 50-200 µm.
- As a result of HHFT longitudinal cracks are formed. The width of longitudinal cracks lie in the range of 100-400 µm.
- As a result of brittle destruction under HHFT remelted material and bridges are peeled off.

- Under ELM and disruption heat loads the CFC erosion was mainly due to PAN-fibers damage. The significant part of eroded materials deposited on the vacuum chamber.
- The maximum deposition rate equaled to $2 \cdot 10^{-2} \mu$ m/pulse ($t_{pulse} = 0.5 \text{ ms}$) was observed in the downstream of plasma at the distance 30-60 cm from the target in the disruption simulation experiments (Q = 2.3 MJ/m²).
- The typical deposited film density was varied from 0.5 g/cm³ (flake-like films) to 2 g/cm³ (solid compact films).
- The typical relative concentration of hydrogen isotopes (H+D):C equaled 0.2 for the compact films (density ≥ 1.5 g/cm³).

Thanks for your attention