Micro-Mechanical Testing For Nuclear Applications

David E.J. Armstrong,

CCFE Junior Research Fellow, Department of Materials, University of Oxford St Edmund Hall, University of Oxford

> PFMC/FEMaS Conference May 2011

Introduction

Introduction Why Micro-mechanical Testing? Basics FIB Machining Nanoindentation Micro-mechanical Testing Case Studies Stress – Strain Responses and Size Effects Measuring Properties of Grain Boundaries

Conclusions

The People

Steve Roberts Angus Wilkinson Davide Di Maio **Jicheng Gong Ben Britton Fiona Haliday** Mike Rogers Will Herbert Lawrence Whyatt **James Robinson** Ele Grieveson James Gibson

The People

Steve Roberts Angus Wilkinson

Davide Di Maio **Jicheng Gong Ben Britton Fiona Haliday** Mike Rogers Will Herbert Lawrence Whyatt **James Robinson Ele Grieveson James Gibson**

Micro-mechanical testing

- Recently developed testing techniques
- Utilizes Focused Ion Beam (FIB) machining and nanoindentation
- Allows manufacture of samples with well-defined stress states
- Allows fracture properties, yield strengths and elastic properties to be measured
- Temperature variation now available

Why use micro-mechanical testing?

- Useful where only small samples are available
 - Cost
 - Processing
- Need for a sample design that can be machined in surface of bulk samples
- Suitable for measuring individual microstructural features
- Samples that can be manufactured quickly and reproducibly 28/06/2011 D.E.J Armstrong 2011

Types of micro-mechanical testing?

- Electro-deposition
- Selectively etched
- FIB machined

- Compression
- Tension
- Three Point Bend
- Cantilever bending

Nanoindentation

UNIVERSITY OF OXFORD

- Nanoindentation mechanical probe which allows local hardness and modulus to be measured
- A sharp diamond is driven into the surface with a known force
- Displacement is measured using a capacitance gauge
- Sharp tip can also be used as a surface profilometer tool
- Also very useful to deform and test specimens 28/06/2011 D.E.J Armstrong 2011

Nanoindentation

- By knowing the contact area between sample and indenter hardness and modulus from unload can be calculated
- A small ac sinusoidal can also be placed on the load
- This Continuous Stiffness Measurement (CSM) allows the modulus and hardness to be continually measured as a function of depth

Nanoindentation

See talk on Wednesday for selected results on nanoindentation of ion implanted surfaces in tungsten and tungsten alloys

OXFORD

Focused Ion Beam Machining

- FIB uses gallium ion (Ga+) to "knock" atoms out of the sample being machined
- Ions focused on surface of sample using electromagnetic lens (similar to SEM)
- Beam currents from 1pA to 45nA allow features as small as 5nm to be machined

Also allows deposition
of Pt/W/C

28/06/2011

Focused Ion Beam Machining

Microcantilever Manufacture

5000x, 5kV, 13mm, beam21

28/06/2011

F

Case Study One: Elastic Anisotropy

Measuring Elastic Anisotropy

- Elastic properties can control deformation processes and important for engineering design u
- engineering design using the series of the se
- Difficult to measure ^{9/2} experimentally unless large single crystal available
- Traditional techniques – static or dynamic require large (mm to cm) samples

22

Elastic Anisotropy In Copper

- Copper: highly anisotropic well characterised material
- Should be an "easy" starting material
- Cantilevers manufactured in single crystal sample at 15° intervals between [100] and [110] directions
- Cantilevers scanned using "nano-vision" stage to produce topographical image

Multiple loading method

- Longer, thinner cantilevers
- Cantilever loaded using nanoindenter close to free end
- Each loading to 200nm (no yield)
- Indenter moved 700nm towards fixed end and cantilever loaded
- Repeated between 5 and 13 times
- Use unload data

Elastic Anisotropy In Copper

Analysis of Elastic Properties 1

• From simple beam theory:

$$S = \frac{L^3}{3EI}$$

 But due to non-fixed end there is extra deflection at the fixed end:

$$\delta_L = \frac{PL^3}{3EI} + \theta_0 L + \delta_0$$

 Ignoring lower order terms beam compliance can be written as:

$$S = \frac{1}{3EI}L^3 + \theta_{m0}L^2$$

Analysis of Elastic Properties 2

- Plot of S versus L³ shows linear relationship at larger values of L
- The gradient of this linear region can be used to find Young's modulus
- Analysis carried out on cantilevers at 15° intervals between [100] and [110]
- Found to give good results for aspect ratio greater than 6

Analysis of Elastic Properties 3

Elastic Anisotropy in Copper

Size Effects on Yield Stress

- Well known that as specimen size decreased yield stress increases
- Exact form of this relationship in triangular microcantilevers unknown
- Cantilevers machined in single crystal copper with long axis in [110] direction
- Range in size from 1μm thick and 10μm long to 18μm thick and 100μm long
- Tested at constant displacement rate of 5nm/s
- Only smallest cantilevers can be used to study ion implanted layers - difficult

FeCr Micro Pillars

- Pillars machined into the ion implanted layers, using multi stage approach
- Width approx 500nm
- Height 3µm lacksquare
- **Flat Punch type** nanoindenter tip used to compress the pillars

FeCr Micro Pillars

D.L.J MINSLIDING ZUIT

FeCr Micro Pillars

Case Study Two: Fracture of Grain Boundries

Measuring grain boundary fracture toughness

- Polycrystalline material properties often controlled by grain boundaries
- Measurement of single boundaries difficult/expensive
- Bi-crystals may only contain "special" boundaries
- Need to be able to compare local chemistry with mechanical properties – especially after irradiation

28/06/2011

Sample manufacture

- Copper bismuth well known for GB fracture at room temperature
- Mechanism and anisotropy of embrittlement not well understood
- Sample contains 0.02wt%Bi (60ppm)
- Cast in vacuum inside quartz tubes @1374K - slow cooled
- Samples sectioned into bars and discs for testing
- Large grains with no visible precipitates

Cantilever manufacture

- Only grain boundaries running normal to surface tested
- Cantilevers have pentagonal crosssection

 Sharp notch milled at grain boundary to act as fracture initiation site

Cantilever manufacture

- Only grain boundaries running normal to surface tested
- Cantilevers have pentagonal crosssection

 Sharp notch milled at grain boundary to act as fracture initiation site

EBSD

Used to characterise misorientation at g.bs being tested

Allows g.bs of specific misorientation to be selected for testing

1-SEM image

2- Grain orientations (normal IPF map)

3-Grain boundaries of greater than 5° misorientation

1

Testing of micro-cantilevers

Tested - Fracture

Tested - No Fracture

28/06/2011

Calculation of GB fracture toughness

$$K_{1c} = \sigma_c \sqrt{\pi a} F(\frac{a}{b})$$

p=load at fracture

w=width

b=beam depth

a=crack depth

L=length

$$\sigma = \frac{p_c Ly}{I} \quad I = \frac{wb^3}{12} + (y - \frac{b}{2})^2 bw + \frac{w^4}{288} + \left[\frac{b}{6} + (b - y)\right]^2 \frac{w^2}{4}$$
$$F(\frac{a}{b}) = 1 + 2.53(\frac{a}{b}) - 14.5(\frac{a}{b})^2 + 35.57(\frac{a}{b})^3 - 22(\frac{a}{b})^4$$

This allows the fracture toughness for pentagonal beams to be calculated from the load displacement data and beam dimensions.

Do we have all dimensions?

p=load at fracture

w=width

b=beam depth

a=crack depth

L=length

Load – Easy. From Nanoindenter Width – Easy. From SEM images pre test **Depth** – Medium. From SEM image, more difficult than W as sample must be tilted and only end can be measured **Crack depth-** Hard. Can estimate before testing but MUST be measured post testing as reproducibility is poor **Length** – Hard. Can't be directly measured on fractured specimens. Can be measured using AFM scan

Results

28/06/2011

46

Results

TEM EDX – FIB lift-out

Applied to real systems

- Copper-bismuth is not of engineering use
- Many important nuclear materials are brittle
 - steels, under the right conditions
 - tungsten
 - ceramics
- Investigation into GB fracture in temperembrittled steels

Temper-embrittled Steel

Load-displacement data

Load-displacement data

Cantilever after testing

High strain rate testing

MML nanotest platform

UNIVERSITY OF

Failure

- It was not possible to achieve brittle fracture in temper embrittled S80 steel
- Although it is brittle the macro-fracture toughness is estimated to be 20 MPam^{0.5}
- The plastic zone around the crack tip is large
- For a micro-scale specimen to be fractured would need to be ≈10mm (Not very micro!!!)
- But James did write up a very good thesis!!

Applications to Tungsten

- Tungsten is brittle (5MPam^{0.5})
- Important for nuclear fusion applications
- Need to understand how to control brittle behaviour
- Tests now being used to characterize brittle boundaries (James Gibson)

Grain Boundaries in Tungsten

J Armstrong 2011

Grain Boundaries in Tungsten

Grain Boundaries in Tungsten

Summary

- Micro-cantilever tests allow us to measure a range of material properties
- Effect of single grain boundaries can be measured
- Small volumes of materials needed for many results
- Allows results which are not obtainable using conventional tests

Summary and Future Questions

- Micro-cantilever tests allow us to measure a range of material properties
- Effect of single grain boundaries can be measured
- Small volumes of materials needed for many results
- Allows results which are anot obtainable using conventional tests

- Problems in working in such small specimens?
- Are the results representative of bulk samples?
- How do Ga+ ions damage the specimens?
- Can modelling explain size effects?
- Can tests be performed at high temperature?

Thanks To

- Steve Roberts
- Angus Wilkinson
- Michael Rieth
- Ben Britton
- CCFE
- St Edmund Hall, Oxford

CULHAM

ο

S I

CENTRET

ΕN