Micro-Mechanical Testing For Nuclear Applications

David E.J. Armstrong,
CCFE Junior Research Fellow,
Department of Materials, University of Oxford
St Edmund Hall, University of Oxford

PFMC/FEMaS Conference
May 2011
Introduction

Why Micro-mechanical Testing?

Basics

FIB Machining
Nanoindentation

Micro-mechanical Testing Case Studies

Stress – Strain Responses and Size Effects
Measuring Properties of Grain Boundaries

Conclusions
The People

Steve Roberts
Angus Wilkinson
Davide Di Maio
Jicheng Gong
Ben Britton
Fiona Haliday
Mike Rogers
Will Herbert
Lawrence Whyatt
James Robinson
Ele Grieveson
James Gibson
The People

Steve Roberts
Angus Wilkinson
Davide Di Maio
Jicheng Gong
Ben Britton
Fiona Haliday
Mike Rogers
Will Herbert
Lawrence Whyatt

James Robinson
Ele Grieveson
James Gibson
Micro-mechanical testing

- Recently developed testing techniques
- Utilizes Focused Ion Beam (FIB) machining and nanoindentation
- Allows manufacture of samples with well-defined stress states
- Allows fracture properties, yield strengths and elastic properties to be measured
- Temperature variation now available
Why use micro-mechanical testing?

• Useful where only small samples are available
 – Cost
 – Processing

• Need for a sample design that can be machined in surface of bulk samples

• Suitable for measuring individual microstructural features

• Samples that can be manufactured quickly and reproducibly
Types of micro-mechanical testing?

- Electro-deposition
- Selectively etched
- FIB machined
- Compression
- Tension
- Three Point Bend
- Cantilever bending
Nanoindentation

- Nanoindentation mechanical probe which allows local hardness and modulus to be measured.
- A sharp diamond is driven into the surface with a known force.
- Displacement is measured using a capacitance gauge.
- Sharp tip can also be used as a surface profilometer tool.
- Also very useful to deform and test specimens.
Nanoindentation

- By knowing the contact area between sample and indenter hardness and modulus from unload can be calculated.

- A small ac sinusoidal can also be placed on the load.

- This Continuous Stiffness Measurement (CSM) allows the modulus and hardness to be continually measured as a function of depth.
See talk on Wednesday for selected results on nanoindentation of ion implanted surfaces in tungsten and tungsten alloys
Focused Ion Beam Machining

- FIB uses gallium ion (Ga+) to “knock” atoms out of the sample being machined
- Ions focused on surface of sample using electromagnetic lens (similar to SEM)
- Beam currents from 1pA to 45nA allow features as small as 5nm to be machined
- Also allows deposition of Pt/W/C
FIB uses gallium ion (Ga^+) to "knock" atoms out of the sample being machined.

Ions focused on the surface of the sample using an electromagnetic lens (similar to SEM).

Beam currents from 1 pA to 45 nA allow features as small as 5 nm to be machined.

Also allows deposition of Pt/W/C.

Focused Ion Beam Machining
Microcantilever Manufacture
When FIB goes wrong

My First Cantilever - November 2004
When FIB goes wrong

5000x, 5kV, 13mm, beam21
When FIB goes wrong
When FIB goes wrong
Case Study One: Elastic Anisotropy
Measuring Elastic Anisotropy

- Elastic properties can control deformation processes and important for engineering design
- Most materials display elastic anisotropy
- Difficult to measure experimentally unless large single crystal available
- Traditional techniques – static or dynamic require large (mm to cm) samples
Elastic Anisotropy In Copper

- Copper: highly anisotropic well characterised material
- Should be an “easy” starting material
- Cantilevers manufactured in single crystal sample at 15° intervals between [100] and [110] directions
- Cantilevers scanned using “nano-vision” stage to produce topographical image
Multiple loading method

- Longer, thinner cantilevers
- Cantilever loaded using nanoindenter close to free end
- Each loading to 200nm (no yield)
- Indenter moved 700nm towards fixed end and cantilever loaded
- Repeated between 5 and 13 times
- Use unload data

28/06/2011 D.E.J Armstrong 2011
Elastic Anisotropy In Copper
Analysis of Elastic Properties 1

• From simple beam theory:

\[S = \frac{L^3}{3EI} \]

• But due to non-fixed end there is extra deflection at the fixed end:

\[\delta_L = \frac{PL^3}{3EI} + \theta_0 L + \delta_0 \]

• Ignoring lower order terms beam compliance can be written as:

\[S = \frac{1}{3EI} L^3 + \theta_{m0} L^2 \]
• Plot of S versus L^3 shows linear relationship at larger values of L

• The gradient of this linear region can be used to find Young’s modulus

• Analysis carried out on cantilevers at 15° intervals between [100] and [110]

• Found to give good results for aspect ratio greater than 6
Analysis of Elastic Properties 3
Elastic Anisotropy in Copper

Measured range 117-131GPa

(7 8 9): [15 12 1]
Size Effects on Yield Stress

• Well known that as specimen size decreased yield stress increases

• Exact form of this relationship in triangular microcantilevers unknown

• Cantilevers machined in single crystal copper with long axis in [110] direction

• Range in size from 1\(\mu\)m thick and 10\(\mu\)m long to 18\(\mu\)m thick and 100\(\mu\)m long

• Tested at constant displacement rate of 5nm/s

• Only smallest cantilevers can be used to study ion implanted layers - difficult
Size Effects on Yield Stress

![Graph showing the relationship between thickness (µm) and yield stress (GPa).]

Yield Stress (GPa)

Thickness (µm)
FeCr Micro Pillars

- Pillars machined into the ion implanted layers, using multi stage approach
- Width approx 500nm
- Height 3μm
- Flat Punch type nanoindenter tip used to compress the pillars
Yield Properties in FeCr Alloys

Ion Implantation

Polish with Colloidal Silica

Implanted layer

Glue Implanted and Unimplanted plates with polished sides together

Mount in Epoxy resin and repolish

28/06/2011 D.E.J Armstrong 2011
FeCr Micro Pillars

Unimplanted

Implanted
FeCr Micro Pillars

Pure Fe
Blue - Unimplanted, Red - Implanted

Stress (MPa) vs. Strain % graph showing the stress-strain behavior of pure Fe samples, with blue lines indicating unimplanted and red lines indicating implanted samples.
Case Study Two: Fracture of Grain Boundaries
Measuring grain boundary fracture toughness

- Polycrystalline material properties often controlled by grain boundaries
- Measurement of single boundaries difficult/expensive
- Bi-crystals may only contain “special” boundaries
- Need to be able to compare local chemistry with mechanical properties – especially after irradiation
Sample manufacture

- Copper bismuth well known for GB fracture at room temperature
- Mechanism and anisotropy of embrittlement not well understood
- Sample contains 0.02wt%Bi (60ppm)
- Cast in vacuum inside quartz tubes @1374K - slow cooled
- Samples sectioned into bars and discs for testing
- Large grains with no visible precipitates
• Only grain boundaries running normal to surface tested

• Cantilevers have pentagonal cross-section

• Sharp notch milled at grain boundary to act as fracture initiation site
Cantilever manufacture

- Only grain boundaries running normal to surface tested
- Cantilevers have pentagonal cross-section
- Sharp notch milled at grain boundary to act as fracture initiation site
EBSD

Used to characterise misorientation at g.bs being tested

Allows g.bs of specific misorientation to be selected for testing

1-SEM image

2- Grain orientations (normal IPF map)

3-Grain boundaries of greater than 5° misorientation

28/06/2011
Testing of micro-cantilevers

Σ3 - twin

General boundary
Tested - Fracture
Tested - No Fracture

28/06/2011
For a pentagonal beam assuming small deflections:

\[K_{1c} = \sigma_c \sqrt{\pi a F \left(\frac{a}{b} \right)} \]

\[\sigma = \frac{p_c Ly}{I} \quad I = \frac{wb^3}{12} + \left(y - \frac{b}{2} \right)^2 bw + \frac{w^4}{288} + \left[\frac{b}{6} + (b - y) \right]^2 \frac{w^2}{4} \]

\[F \left(\frac{a}{b} \right) = 1 + 2.53 \left(\frac{a}{b} \right) - 14.5 \left(\frac{a}{b} \right)^2 + 35.57 \left(\frac{a}{b} \right)^3 - 22 \left(\frac{a}{b} \right)^4 \]

This allows the fracture toughness for pentagonal beams to be calculated from the load displacement data and beam dimensions.

p=load at fracture
w=width
b=beam depth
a=crack depth
L=length
Do we have all dimensions?

Load – Easy. From Nanoindenter

Width – Easy. From SEM images pre test

Depth – Medium. From SEM image, more difficult than W as sample must be tilted and only end can be measured

Crack depth- Hard. Can estimate before testing but MUST be measured post testing as reproducibility is poor

Length – Hard. Can’t be directly measured on fractured specimens. Can be measured using AFM scan
Results

![Graph showing fracture toughness vs. angle of rotation]

- Fracture Toughness (MPam$^{0.5}$)
- Angle of rotation (°)
Results

[Diagram showing crystallographic orientations with labeled planes and vectors.]

- **Fractured Boundary Plane Normals**
- **Unfractured Boundary Plane Normals**

28/06/2011 D.E.J Armstrong 2011
TEM EDX – FIB lift-out

EDX spectrum from grain boundary

EDX spectrum from bulk

Bi
• Copper-bismuth is not of engineering use
• Many important nuclear materials are brittle
 – steels, under the right conditions
 – tungsten
 – ceramics
• Investigation into GB fracture in temper-embrittled steels
Temper-embrittled Steel
Load-displacement data
Load-displacement data
Cantilever after testing
High strain rate testing

MML nanotest platform
Failure

• It was not possible to achieve brittle fracture in temper embrittled S80 steel
• Although it is brittle the macro-fracture toughness is estimated to be 20 MPam^{0.5}
• The plastic zone around the crack tip is large
• For a micro-scale specimen to be fractured would need to be ≈10mm (Not very micro!!!)
• But James did write up a very good thesis!!
Applications to Tungsten

- Tungsten is brittle ($5\text{MPam}^{0.5}$)
- Important for nuclear fusion applications
- Need to understand how to control brittle behaviour
- Tests now being used to characterize brittle boundaries (James Gibson)
Grain Boundaries in Tungsten
Grain Boundaries in Tungsten

<table>
<thead>
<tr>
<th>Cantilever</th>
<th>Fracture Toughness (K_{JC}) (MPa m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.9</td>
</tr>
<tr>
<td>5</td>
<td>17.9</td>
</tr>
<tr>
<td>9</td>
<td>0.53</td>
</tr>
<tr>
<td>11</td>
<td>21.2</td>
</tr>
<tr>
<td>12</td>
<td>6.52</td>
</tr>
</tbody>
</table>
Micro-cantilever tests allow us to measure a range of material properties.

Effect of single grain boundaries can be measured.

Small volumes of materials needed for many results.

Allows results which are not obtainable using conventional tests.
Summary and Future Questions

- Micro-cantilever tests allow us to measure a range of material properties.
- Effect of single grain boundaries can be measured.
- Small volumes of materials needed for many results.
- Allows results which are not obtainable using conventional tests.

- Problems in working in such small specimens?
- Are the results representative of bulk samples?
- How do Ga+ ions damage the specimens?
- Can modelling explain size effects?
- Can tests be performed at high temperature?
Thanks To

- Steve Roberts
- Angus Wilkinson
- Michael Rieth
- Ben Britton
- CCFE
- St Edmund Hall, Oxford