

ANALYSIS OF PLASMA FACING MATERIALS IN CONTROLLED FUSION DEVICES

Marek Rubel

Alfvén Laboratory, Royal Institute of Technology, Association EURATOM – VR, Stockholm, Sweden

Acknowledgements

Paul Coad and Guy Matthews

Jari Likonen

Volker Philipps and Peter Wienhold

Tetsuo Tanabe

Nikolas Bekris and Ralf-Dieter Penzhorn

STRUCTURE OF THE TALK

- What is to be analysed?
- Why is it to be analysed?
- How is the analysis carried out?

What is to be analysed ?

A large number of:

- limiter plates
- divertor plates
- other wall components
- optical components
- instrumented tiles
- long-term probes
- short-term probes

[At least tiles from one poloidal cross section.]

Layers of Re-deposited Material

EROSION BY MELTING

Beryllium antenna screen at JET $T_m(Be) = 1278 \circ C$

Limiter from FTU TZM coated with 2 mm VPS Tungsten $T_m(W) = 3683 \circ C$

Atoms to be Analysed in Re-deposited LayersFUELZ = 1 (H D T)

PLASMA IMPURITY ATOMS: Eroded species

Z > 2

For instance: Li Be ¹⁰B ¹¹B ¹²C ¹³C ¹⁴C Si Ni Cr Fe Mo W Re

We are to answer some basic questions !

What has happened ?

Why has it happened?

How to deal with the problem ?

We are paid NOT only to find and emphasize problems but TO FIND AND PROVIDE SOLUTIONS.

ANALYSIS

Methods, selected Results & Instrumentation

ION BEAMS for Material Characterisation

Collisions & Scattering

RBS & (EPS)

ERDA & (HI-ERDA)

$$= \left(\frac{M_p / M_r \cos \theta + \sqrt{1 - (M_p / M_r)^2 \sin^2 \theta}}{1 + M_p / M_r}\right)^2$$

 k_p is unique for a given $M_p - M_r$ combination:

- unambiguous determination of a given mass in the spectrum
- for a given M_p mass separation decreases for increasing M_r.
- better separation of larger M_r with heavier M_p
- only target atoms heavier than projectiles can be determined
- for $M_p \ge M_r$ only forward scattering possible
- \mathbf{k}_{p} increases with Θ .
- better detection at large scattering angles.

Efficiency in RBS: Differential Cross-section

$$\frac{\mathrm{d}\sigma_p}{\mathrm{d}\Omega} \propto \left(\frac{Z_p Z_r e^2}{2E_0}\right)^2 (\Theta, M_p, M_r)$$

σ_p cross-section Ω solid angle in detection system Z_p, Z_r atomic numbers

Important: For a given projectile σ_p scales with $(Z_r / E_0)^2$ \rightarrow higher sensitivity for heavy elements and at lower E_0 .

Rutherford Backscattering Spectrum (⁴He⁺ beam): Elements Co-deposited on Graphite PFC

Good separation of low masses, poorer for medium and high.

No detection of deuterium with a ⁴He⁺ beam.

Very difficult (not possible) to detect co-deposited boron on the graphite target. High sensitivity for heavy elements.

Quantification

$N_t = A/\sigma \Omega Q$

- N_t concentration of species
- A number of counts in multi-channel analyser
- *Q* ion dose measured by current integrator
- σ_p cross-section
- $\hat{\Omega}$ solid angle in detection system
- Z_p, Z_r atomic numbers

All parameters in the system are directly measured (Q, A) and independently calculated (Ω , σ) knowing the scattering geometry, detector active area, atomic masses and numbers.

- There is no free parameter left.
- RBS is an absolute quantitative method.
- No standards for calibration are required.*

NUCLEAR RESONANCE & ENHANCED PROTON BACKSCATTERING: C-13 Resonance and C-12 enhanced scattering

Carbon transport studies by tracer techniques

- Very good separation of small masses (but hopeless for high).
- High sensitivity for low-Z (not attainable with a ⁴He beam).

³He(d,p)⁴He

Q = 18.3636 MeVDetected particle: proton 11 – 14 MeV rangeProton spectrum can be converted into a deuterium depth profile.

Cross- section *versus* **energy**

Information depth in C matrix

Nuclear Reaction Analysis depth profile of deuterium in a flake from the ALT II tile

³He beam 1.8 MeV

Layer Structure and D concentration:

9 x 10¹⁷ D at μ m⁻¹ = 9 x 10²¹ D at / g C

D/C = 0.1

Deuterium Depth Profiles in Plasma Facing Components

Forschungszentrum Jülich

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT

MATERIAL MIGRATION STUDIES: **TRACER TECHNIQUES**

How is carbon transported and where is it re-deposited?

How to answer these questions?

- Controlled injection of ¹³C tracer.
- Analysis of tiles to quantify the amount of ¹³C tracer re-deposited in different locations.

Why accelerator-based IBA techniques ? Summary

- Efficiency:
 - Combination of various techniques in one system.
 - Analysis of many elements and isotopes in the same system.
 - Relatively quick analysis over large areas.
- Sensitivity & Selectivity & Quantification (no standards).
- Neither special sampling nor sample preparation needed.
- Depth profiling (limited in some cases).
- Chemical state of atoms is of secondary importance.

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT

SIMS Analysis of Tracer Experiment: Depth Distribution of Re-deposited ¹³C

Message: vast amount of C-13 is found in a thin surface layer (< 2 μ m). Question: Why are the carbon profiles hollow?

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Jet

SIMS: **Depth Distribution of Species**

Secondary Ion Mass Spectrometry: Advantages and Limitations

- Ultra-high sensitivity. Unbeatable in qualitative analysis.
- Depth profiling.
- Poor quantification because of matrix and crater effects.

TRITIUM ANALYSIS

- LIQUID SCINTILLOGRAPHY (LSC) OF TRITIATED WATER
- IMAGING PLATE (IP)
- BETA-INDUCED X-RAY SPECTROSCOPY (BIXS)

JET Divertor: Tritium retention after D-T Operation

Example of a divertor tile

D, **Be** and **C**: *NRA* with a ³He⁺ beam

The aims of sampling:

•Reduction of total radioactivity to be handled in further studies

•Comparative analysis of D and T

Imaging Plate Technique for Tritium Analysis

Tritium on the divertor plate from JET

Courtesy: Tetsuo Tanabe, Kyushu University, Japan Back side of exfoliated layer

INSTRUMENTATION

INSTRUMENTATION FOR ANALYSIS OF PFM

- Accelerator
- Analysis chamber with detectors
- Targets

Instrumentation: Analysis chamber

Instrumentation: Limiter manipulator

Weight: 23 kg

Capabilities: Probes up to 20 kg Rotation X and Y: 180° Positioning: ± 50 μm

Jet

MATERIAL TRANSPORT STUDIES: **TRACER TECHNIQUES and COLLECTOR PROBES**

EUROPEAN FUSION DEVELOPMENT AGREEMENT O EFDA JET

Concluding Remarks: Overview of Material Migration in JET

This picture is based on:

- **Tile analysis**
- **Tracer injection experiments**
- **Probe measurements**
- **Quartz micro-balance data**

Simple concluding remarks and recommendations

Use a relevant set of methods for solving a given problem.

NEVER EVER claim that "MY METHOD" solves all problems (possible and impossible).

Cross-check your results !

There is NO single method that can answer all questions but there are methods that can provide answers to specific questions.

CO-OPERATE !!

Thank you for listening