

Asymptotic preserving schemes (AP) for magnetically confined plasmas Highly anisotropic elliptic/parabolic equations

Claudia Negulescu

Institut de Mathématiques de Toulouse

Université Paul Sabatier

Objective: Numerical study of highly anisotropic, multi-scale problems

- Many pb. in nature exhibit multi-scale behaviours, which can be rather different in character
- Typical: occurence of one or several small/large parameters (Reynolds, Peclet, Mach nbr. etc)
- General, unified treatment is impossible

Multi-scale plasma dynamics

Plasma dynamics is characterized by multi-scale phenomena \rightarrow Strong magn. fields create anisotropies \rightarrow Particles gyrate around the field lines

Drift Motion

A small-scale numerical simulation is out of reach

- requires mesh-sizes dependent on small scale param. $\varepsilon \ll 1$
- excessive computational time and memory space are needed to capture small scales

It is not always of interest to resolve the details at the small scale. Multi-scale strategies are much more adequate!

homogeneisation, domain decomposition, multi-grids, multi-scale methods based on wavelets or finite elements, multi-scale variational methods

Essential feature of these methods

capture efficiently the large scale behavior of the solution, without resolving the small scale features **Difficulty:** Resolution of multiscale pb. can be very difficult, if the pb. becomes singular, as one of the parameters $\varepsilon \to 0$

- (P^{ε}) sing. perturbed pb. with sol. f_{ε}
- the seq. f_{ε} converges towards f_0 , sol. of a limit pb. (P^0)
- the limit pb. (P^0) is different in type from the initial (P^{ε})
- standard schemes would require $\Delta t, \Delta x \sim \varepsilon$ for stability Definition: A scheme $P^{\varepsilon,h}$ is AP iff it is convergent for $h \to 0$

uniformely in ε , *i.e.*

AP-procedure:

- requires that the limit problem (P^0) is identified and well-posed
- ⇒ consists in trying to mimic at discrete level the asymptotic behaviour of the sing. perturbed pb. sol. f_{ε}
- requires a sufficient degree of implicitness (not obvious)

Advantages:

- gives accurate and stable results, with no restrictions on the computational mesh
- enables to capture automatically the Limit model P^0 , if $\varepsilon \to 0$ (micro-macro transition)
- \blacksquare no more coupling needed, if $\varepsilon(x)$ is variable

6

• Fundamental kinetic model: Vlasov/Boltzmann equation

$$\partial_t f + v \cdot \nabla_x f + \frac{q}{m} (E + v \times B) \cdot \nabla_v f = Q(f)$$

Several small scales/parameters occur, leading to diff. regimes:

• Hydrodynamic scaling [Filbet/Jin; Dimarco/Pareschi]

$$\partial_t f + v \cdot \nabla_x f = \frac{1}{\varepsilon} Q(f)$$

- $0 < \varepsilon \ll 1$: mean free path (Knudsen nbr.)
- in the limit $\varepsilon \to 0$, one gets the compressible Euler eq.
- AP-scheme: Decomposition of the source term in stiffand non-stiff part O(f) = O(f) = P(f) = P(f)

$$\frac{Q(f)}{\varepsilon} = \frac{Q(f) - P(f)}{\varepsilon} + \frac{P(f)}{\varepsilon}$$

Kinetic models and specific limit regimes

• Drift-Diffusion scaling [Klar; Lemou/Mieussens] $\partial_t f + \frac{1}{\varepsilon} (v \cdot \nabla_x f + \nabla_x \Phi \cdot \nabla_v f) + \frac{1}{\varepsilon^2} Q(f) = G$

 \bullet 0 < $\varepsilon \ll 1$: mean free path

- in the limit $\varepsilon \to 0$, one gets the Drift-Diffusion model
- AP-scheme: Micro-Macro decomp. $f = \rho M + \varepsilon g$

Vlasov-Poisson quasi-neutral limit [Belaouar;Crouseilles;Degond;Deluzet;Sonnendrucker;Navoret;Vignal]

$$\begin{cases} \partial_t f + v \partial_x f + \partial_x \Phi \partial_v f = 0 \quad \text{or} \quad = \frac{1}{\varepsilon} Q(f) \\ -\lambda^2 \partial_{xx} \Phi = 1 - \rho \end{cases}$$

 $0 < \lambda \ll 1$: rescaled Debye length; $0 < \varepsilon \ll 1$: mean free path

AP-scheme: Reformulation of the Poisson equation

8

- Vlasov-Maxwell quasi-neutral limit [Degond/Deluzet/Dimarco/Doyen]
- High-field limit, strong magn. fields [Bostan, Frenod, Golse, Saint-Raymond]

$$\partial_t f + v_{||} \cdot \nabla_x f + E \cdot \nabla_v f + \frac{1}{\tau} v_\perp \cdot \nabla_x f + \frac{1}{\varepsilon} (v \times B) \cdot \nabla_v f = 0$$

- $0 < \varepsilon \ll 1$: cycl. period; $0 < \tau \ll 1$: Larmor radius
- in the limit $\varepsilon, \tau \to 0$, one gets the finite Larmor radius approx. or the guiding-center approx.
- asymptotical analysis:
 - Study of the dominant operator $\mathcal{T} := (v(p) \times B) \cdot \nabla_v$
 - Projection of the eq. on ker \mathcal{T} = averaging along the charact. flow associated to \mathcal{T}
- construction of AP-scheme mimics this asymp. analysis

• Euler-Poisson quasi-neutral limit [Crispel/Degond/Vignal]

$$\begin{aligned} \partial_t n + \nabla \cdot (n \, u) &= 0 \\ \partial_t (n \, u) + \nabla \cdot (n \, u \otimes u) + \nabla p(n) &= n \, \nabla \Phi \\ -\lambda^2 \Delta \Phi &= 1 - n \end{aligned}$$

■ $0 < \lambda \ll 1$: rescaled Debye length

• High-field limit, Euler-Lorentz [Brull;Degond;Deluzet;Mouton;Sangam;Vignal]

$$\begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0 \\\\ \partial_t (n \, u) + \nabla \cdot (n \, u \otimes u) + \frac{1}{\tau} \nabla p(n) = \frac{1}{\tau} n \left(E + u \times B \right) \end{cases}$$

 $\rightarrow 0 < \tau \ll 1$: rescaled gyro-period

Fluid models and specific limit regimes

- Low Mach-nbr. limit [Degond/Tang; Cordier/Degond/Kumbaro] $\begin{cases} \partial_t n + \nabla \cdot (n \, u) = 0\\ \partial_t (n \, u) + \nabla \cdot (n \, u \otimes u) + \frac{1}{\varsigma^2} \nabla p(n) = 0 \end{cases}$
 - \bullet 0 < $\varepsilon \ll$ 1: rescaled Mach-nbr.
 - in the limit $\varepsilon \to 0$, one gets the incompressible Euler eq.

AP-scheme: Stiff term is decomposed as

$$\frac{1}{\varepsilon^2}\nabla p(n) = \alpha \nabla p(n) + \frac{1 - \alpha \varepsilon^2}{\varepsilon^2} \nabla p(n)$$

• Highly anisotropic potential/temp. eq. [Deluzet/Lozinski/Mentrelli/Narski/Negulescu]

$$-\frac{1}{\varepsilon}\nabla_{||}\cdot(A_{||}\nabla_{||}\phi) - \nabla_{\perp}\cdot(A_{\perp}\nabla_{\perp}\phi) = f$$
$$\partial_t T - \frac{1}{\varepsilon}\nabla_{||}\cdot(K_{||}\nabla_{||}T) - \nabla_{\perp}\cdot(K_{\perp}\nabla_{\perp}T) = 0$$

Anisotropic elliptic equation

Work based on:

 P. Degond, F. Deluzet, C. Negulescu "An asymptotic preserving scheme for strongly anisotropic elliptic problems", SIAM-MMS.
 P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu "Duality based Asymptotic-Preserving Method for highly anisotropic diffusion equations", CMS.
 P. Degond, A. Lozinski, J. Narski, C. Negulescu "An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition", JCP. Macroscopic nature of magnetically confined plasma dynamics can be described via the one-fluid (MHD) model

• Continuity equation of plasma charge

 $\partial_t \rho_c + \operatorname{div} \cdot j = 0 \,,$

 $\rho_c := qn_i - en_e \,, \quad j = qn_i u_i - en_e u_e \,, \quad q = eZ$

• Quasi-neutrality ($|n_e - Zn_i| \ll n_e$) implies

 $\rho_c \approx 0 \Rightarrow \nabla \cdot j = 0$

• Ohm's law

$$j = \sigma(E + v \times B), \quad v = \frac{n_e m_e u_e + n_i m_i u_i}{n_e m_e + n_i m_i}, \quad E = -\nabla\phi$$

Theme: Numerical resolution of highly anisotropic elliptic eq.

$$\left\{ \begin{array}{ll} -\nabla \cdot (\mathbb{A} \nabla \phi) = f \,, \quad \text{on } \Omega \\ \phi = 0 \quad \text{on } \partial \Omega_D \,, \quad \partial_z \phi = 0 \quad \text{on } \partial \Omega_z \,, \end{array} \right.$$

where $\Omega \subset \mathbb{R}^2$ or $\Omega \subset \mathbb{R}^3$ and $\partial \Omega = \partial \Omega_D \cup \partial \Omega_z$. • Diffusion matrix \mathbb{A} is given by

$$\mathbb{A} = \begin{pmatrix} A_{\perp} & 0\\ 0 & \frac{1}{\varepsilon}A_z \end{pmatrix}, \quad -\frac{\partial}{\partial x} \left(A_{\perp}\frac{\partial\phi}{\partial x}\right) - \frac{1}{\varepsilon}\frac{\partial}{\partial z} \left(A_z\frac{\partial\phi}{\partial z}\right) = f,$$

A⊥, Az of same order of magnitude, bounded from below/above
0 < ε ≪ 1 very small

• anisotropy aligned with the *z*-coordinate

14

$$(P) \begin{cases} -\frac{\partial}{\partial x} \left(A_{\perp} \frac{\partial \phi}{\partial x} \right) - \frac{1}{\varepsilon} \frac{\partial}{\partial z} \left(A_{z} \frac{\partial \phi}{\partial z} \right) = f, \quad \text{on} \quad \Omega, \\ \frac{\partial \phi}{\partial z} = 0 \quad \text{on} \quad \Omega_{x} \times \partial \Omega_{z}, \qquad \phi = 0 \quad \text{on} \quad \partial \Omega_{x} \times \Omega_{z}, \end{cases}$$

Letting formally $\varepsilon \to 0$, yields the reduced problem (R-model)

$$(R) \begin{cases} -\frac{\partial}{\partial z} \left(A_z \frac{\partial \phi}{\partial z} \right) = 0, \quad \text{on} \quad \Omega, \\ \frac{\partial \phi}{\partial z} = 0 \quad \text{on} \quad \Omega_x \times \partial \Omega_z, \qquad \phi = 0 \quad \text{on} \quad \partial \Omega_x \times \Omega_z, \end{cases}$$

 \rightarrow R is an ill-posed problem !

 \rightarrow R exhibits an infinit amount of solutions $\phi(x)$.

15

The Limit problem (L-model)

• Numerical burden: Discretization matrix of P-model is very ill-conditioned, $cond \sim \frac{1}{\varepsilon}$.

 \rightarrow standard resolution meth. for lin. syst. no more efficient for $0 < \varepsilon << 1$

• However, ϕ_{ε} (sol. of P-model) $\rightarrow_{\varepsilon \to 0} \overline{\phi}_0$, sol. of

(L)
$$\begin{cases} -\frac{\partial}{\partial x} \left(\bar{A}_{\perp} \frac{\partial \bar{\phi}}{\partial x} \right) = \bar{f}(x), & \text{on } \Omega_x, \\ \bar{\phi} = 0 & \text{on } \partial \Omega_x, \end{cases}$$

where $\overline{f}(x) := \frac{1}{L_z} \int_0^{L_z} f(x, z) dz$ is the average along *z*-coord. Identification of Limit-model:

- Suppose $\phi_{\varepsilon} \to \phi_0$, where $\phi_0(x)$ dep. only on x
- Integrate (P_{ε}) in z and pass to the limit $\varepsilon \to 0$
- \blacksquare Averaging in z is the proj. on the kernel of dominant op.

Let us denote by:

- \blacksquare || the direction of the anisotropy (here *z*-direction)
- \blacksquare \bot the perpendicular direction (here *x*-direction)
- the bilinear forms

$$a_{||}(\phi,\psi) \quad := \quad \int_{\Omega} A_{||} \nabla_{||} \phi \cdot \nabla_{||} \psi \, dx \, dz \,, \quad a_{\perp}(\phi,\psi) := \int_{\Omega} (A_{\perp} \nabla_{\perp} \phi) \cdot \nabla_{\perp} \psi \, dx \, dz \,.$$

How to switch from sing. perturbed pb.: find $\phi^{\varepsilon} \in \mathcal{V}$, sol. of

$$(P_{\varepsilon}) \ a_{||}(\phi^{\varepsilon}, \psi) + \varepsilon a_{\perp}(\phi^{\varepsilon}, \psi) = \varepsilon(f, \psi) \,, \quad \forall \psi \in \mathcal{V} \,,$$

to Limit model: find $\phi^0 \in \mathcal{G}$, sol. of

(L)
$$a_{\perp}(\phi^0, \psi) = \varepsilon(f, \psi), \quad \forall \psi \in \mathcal{G},$$

Goal: AP-scheme which switches automatically, with no hugh num. costs

• Introduction of mathematical framework

 $\mathcal{V} := \{ \phi \in H^1(\Omega) / \phi_{|\partial\Omega_D} = 0 \}, \quad (\phi, \psi)_{\mathcal{V}} := (\nabla_{||}\phi, \nabla_{||}\psi)_{L^2} + \varepsilon (\nabla_{\perp}\phi, \nabla_{\perp}\psi)_{L^2}$

• Identification of Kernel of dominant operator

$$\begin{split} \mathcal{G} &:= \{ \phi \in \mathcal{V} \mid \nabla_{\parallel} \phi = 0 \} \,, \quad (\phi, \psi)_{\mathcal{G}} := (\nabla_{\perp} \phi, \nabla_{\perp} \psi)_{L^2} \,, \\ \mathcal{A} &:= \{ \phi \in \mathcal{V} \mid (\phi, \psi) = 0 \ , \ \forall \psi \in \mathcal{G} \} = \{ \phi \in \mathcal{V} \mid \int_{L^2} \phi(x, z) \, dz = 0 \} \end{split}$$

• Definition of the orthogonal projection on the Kernel

$$P: \mathcal{V} \to \mathcal{G}$$
 such that $P\phi := \frac{1}{L_z} \int_{L_z} \phi(x, z) \, dz$

• Definition of decomposition $\mathcal{V} = \mathcal{G} \oplus^{\perp} \mathcal{A}$

$$\phi^{\varepsilon} \in \mathcal{V} \Rightarrow \phi^{\varepsilon} = p^{\varepsilon} + q^{\varepsilon}, \quad p^{\varepsilon} = P\phi^{\varepsilon} \in \mathcal{G}, \quad q^{\varepsilon} = (I - P)\phi^{\varepsilon} \in \mathcal{A}$$

• Insertion of $\phi^{\varepsilon} = p^{\varepsilon} + q^{\varepsilon}$ in sing. perturbed pb.: $\phi^{\varepsilon} \in \mathcal{V}$

$$(P_{\varepsilon}) \ a_{||}(\phi^{\varepsilon},\psi) + \varepsilon a_{\perp}(\phi^{\varepsilon},\psi) = \varepsilon(f,\psi) \,, \quad \forall \psi \in \mathcal{V} \,,$$

• Projection on the kernel \Rightarrow Asymp.-preserv. pb.: $(p^{\varepsilon}, q^{\varepsilon}) \in \mathcal{G} \times \mathcal{A}$

$$(AP)_{\varepsilon} \begin{cases} a_{\perp}(p^{\varepsilon},\eta) + a_{\perp}(q^{\varepsilon},\eta) = (f,\eta), & \forall \eta \in \mathcal{G}, \\ a_{\parallel}(q^{\varepsilon},\xi) + \varepsilon a_{\perp}(q^{\varepsilon},\xi) + \varepsilon a_{\perp}(p^{\varepsilon},\xi) = \varepsilon(f,\xi), & \forall \xi \in \mathcal{A}. \end{cases}$$

• In the limit $\varepsilon \to 0$ one gets Limit pb.: $(p^0, q^0) \in \mathcal{G} \times \mathcal{A}$

$$(L) \begin{cases} a_{\perp}(p^0,\eta) + a_{\perp}(q^0,\eta) &= (f,\eta), \quad \forall \eta \in \mathcal{G} \\ \\ a_{\parallel}(q^0,\xi) &= 0, \quad \forall \xi \in \mathcal{A}, \end{cases}$$

19

Summary of the AP-idea

$$\begin{split} \mathcal{V} &:= \{\psi(\cdot, \cdot) \in H^1(\Omega) \ / \ \psi = 0 \text{ on } \partial\Omega_x \times \Omega_z\} \quad \mathcal{V} = \mathcal{G} \oplus^{\perp} \mathcal{A} \\ \mathcal{G} &:= \{\phi \in \mathcal{V} \ | \ \nabla_{\parallel} \phi = 0\} = \{\phi(\cdot) \in H^1(\Omega_x) \ / \ \phi = 0 \text{ on } \partial\Omega_x\} \,, \\ \mathcal{A} &:= \{\phi \in \mathcal{V} \ | (\phi, \psi) = 0 \ , \ \forall \psi \in \mathcal{G}\} = \{\phi \in \mathcal{V} \ | \ \int_{L_z} \phi(x, z) \, dz = 0\} \end{split}$$

More general context (P-model)

Let *b* be a vector field: direction of the anisotropy (magnetic field)

$$\nabla_{\parallel}\phi := (b \cdot \nabla \phi)b, \quad \nabla_{\perp}\phi := (Id - b \otimes b)\nabla\phi$$

$$\begin{pmatrix} -\frac{1}{\varepsilon}\nabla_{\parallel} \cdot (A_{\parallel}\nabla_{\parallel}u^{\varepsilon}) - \nabla_{\perp} \cdot (A_{\perp}\nabla_{\perp}u^{\varepsilon}) = f & \text{in } \Omega, \\ \frac{1}{\varepsilon}n_{\parallel} \cdot (A_{\parallel}\nabla_{\parallel}u^{\varepsilon}) + n_{\perp} \cdot (A_{\perp}\nabla_{\perp}u^{\varepsilon}) = 0 & \text{on } \Gamma_{N}, \\ u^{\varepsilon} = 0 & \text{on } \Gamma_{D}. \end{cases}$$

 $\Gamma_D := \{ x \in \Gamma / b(x) \cdot n(x) = 0 \}, \quad \Gamma_N := \{ x \in \Gamma / b(x) \cdot n(x) \neq 0 \}.$

• Introduction of mathematical framework

 $\mathcal{V} := \{ u \in H^1(\Omega) \ / \ u_{|\Gamma_D} = 0 \} \,, \quad (u, v)_{\mathcal{V}} := (\nabla_{||} u, \nabla_{||} v)_{L^2} + (\nabla_{\perp} u, \nabla_{\perp} v)_{L^2}$

• Identification of Kernel of dominant operator

$$\mathcal{G} := \{ u \in \mathcal{V} \mid \nabla_{\parallel} u = 0 \}, \quad (u, v)_{\mathcal{G}} := (\nabla_{\perp} u, \nabla_{\perp} v)_{L^2},$$

Limit problem (L-model)

The solution u^{ε} of pb. $(P)_{\varepsilon}$

$$(P)_{\varepsilon} \qquad \int_{\Omega} A_{||} \nabla_{||} u^{\varepsilon} \cdot \nabla_{||} v \, dx + \varepsilon \int_{\Omega} (A_{\perp} \nabla_{\perp} u^{\varepsilon}) \cdot \nabla_{\perp} v \, dx = \varepsilon(f, v) \,, \quad \forall v \in \mathcal{V} \,,$$

converges for $\varepsilon \to 0$ towards u^0 , sol. of

$$f(L) = \int_{\Omega} (A_{\perp} \nabla_{\perp} u^0) \cdot \nabla_{\perp} v \, dx = \int_{\Omega} f v \, dx \,, \quad \forall v \in \mathcal{G} \,.$$

Goal: AP-scheme which switches automatically between (P_{ε}) and (L).

• Definition of Duality-Based decomposition $\mathcal{V} = \mathcal{G} \oplus^{\perp} \mathcal{A}$

 $\phi^{\varepsilon} \in \mathcal{V} \Rightarrow \phi^{\varepsilon} = p^{\varepsilon} + q^{\varepsilon}, \quad p^{\varepsilon} = P\phi^{\varepsilon} \in \mathcal{G}, \quad q^{\varepsilon} = (I - P)\phi^{\varepsilon} \in \mathcal{A}$

 $\mathcal{G} := \{ \phi \in \mathcal{V} \mid \nabla_{\parallel} \phi = 0 \}, \quad \mathcal{A} := \{ \phi \in \mathcal{V} \mid \int_{L_z} \phi(x, z) \, dz = 0 \}$

• Definition of the orthogonal projection on the Kernel

$$P: \mathcal{V} \to \mathcal{G}$$
 such that $P\phi := \frac{1}{L_z} \int_{L_z} \phi(x, z) \, dz$

• New Micro-Macro decomposition (based on Hilbert-Ansatz idea)

$$u^{\varepsilon} = p^{\varepsilon} + \varepsilon q^{\varepsilon}$$

where

$$\nabla_{||} p^{\varepsilon} = 0 \,, \quad \nabla_{||} u^{\varepsilon} = \varepsilon \nabla_{||} q^{\varepsilon} \,, \quad q^{\varepsilon}_{|\Gamma_{in}} = 0$$

Asymptotic-Preserving schemes (AP-schemes)

Highly anisotropic elliptic problem :

$$(P_{\varepsilon}) \int_{\Omega} A_{\perp} \nabla_{\perp} u^{\varepsilon} \cdot \nabla_{\perp} v \, dx + \int_{\Omega} \frac{A_{\parallel}}{\varepsilon} \nabla_{\parallel} u^{\varepsilon} \cdot \nabla_{\parallel} v \, dx = \int_{\Omega} f v \, dx, \quad \forall v \in \mathcal{V}$$

Micro-Macro decomposition: $u^{\varepsilon} = p^{\varepsilon} + \varepsilon q^{\varepsilon}, \quad \mathcal{V} = \mathcal{G} \oplus \mathcal{L}$

$$\mathcal{L} := \{ q \in L^2(\Omega) / \nabla_{\parallel} q \in L^2(\Omega) \text{ and } q|_{\Gamma_{in}} = 0 \}.$$

$$(AP_{\varepsilon}) \begin{cases} \int_{\Omega} A_{\perp} \nabla_{\perp} u^{\varepsilon} \cdot \nabla_{\perp} v \, dx + \int_{\Omega} A_{||} \nabla_{||} q^{\varepsilon} \cdot \nabla_{||} v \, dx = \int_{\Omega} f v \, dx, \quad \forall v \in \mathcal{V} \\ \int_{\Omega} A_{||} \nabla_{||} u^{\varepsilon} \cdot \nabla_{||} w \, dx - \int_{\Omega} \varepsilon A_{||} \nabla_{||} q^{\varepsilon} \cdot \nabla_{||} w \, dx = 0, \quad \forall w \in \mathcal{L} \end{cases}$$

- Reformulation of (P_{ε}) in a saddle-point problem (AP_{ε})
- q^0 is (in the limit) a sort of Lagrange multiplier for the constraint $\nabla_{||} u^0 = 0$
- AP-formulation converges uniformely in ε towards the Limit-model (L)

• Exact solution u_e^{ε} , Num. sol. (AP) u_A^{ε} , Num. sol. (P) u_P^{ε} , Num. sol. (L) u_L^{ε}

 $u_e^{\varepsilon} = \sin\left(\pi y + \alpha(y^2 - y)\cos(\pi x)\right) + \varepsilon\cos\left(2\pi x\right)\sin\left(\pi y\right)$

 \rightarrow Cond. of the discretization matrix of pb. (P) degenerates if $\varepsilon \rightarrow 0$, whereas it remains ε -independent for the AP-scheme

Numerical results

- The AP-scheme is unif. precise in ε , of order 3 in the L^2 -norm and of order 2 in the H^1 -norm (\mathbb{Q}_2 -FE)
- This AP-scheme does not require to adapt the grid with respect to the field *b*
- The AP-formulation can treat variable anisotropies

Anisotropic parabolic equation

Work based on:

[1] A. Mentrelli, C. Negulescu "Asymptotic-Preserving scheme for highly anisotropic non-linear diffusion equations", Journal of Comp. Phys.

[2] A. Lozinski, J. Narski, C. Negulescu "Highly anisotropic temperature balance equation and its asymptotic-preserving resolution", submitted to M2AN.

• Two-fluid description of plasma dynamics

$$\begin{aligned} \partial_t n_{\alpha} + \nabla \cdot (n_{\alpha} u_{\alpha}) &= S_{n\alpha} \,, \\ m_{\alpha} n_{\alpha} \left[\partial_t u_{\alpha} + (u_{\alpha} \cdot \nabla) u_{\alpha} \right] &= n_{\alpha} e_{\alpha} (E + u_{\alpha} \times B) - \nabla \cdot P_{\alpha} + R_{\alpha} \,, \\ \frac{3}{2} n_{\alpha} k_B \left[\partial_t T_{\alpha} + (u_{\alpha} \cdot \nabla) T_{\alpha} \right] &= -\nabla \cdot q_{\alpha} - P_{\alpha} : \nabla u_{\alpha} + Q_{\alpha} \,, \end{aligned}$$

• Fourier law: $q_{\alpha} := -\kappa_{\alpha} \nabla T_{\alpha}$

• Anisotropy due to the magn. field: $\kappa_{\alpha,||} \sim T_{\alpha}^{5/2}$, $\kappa_{\alpha,\perp}$ indep. on T_{α}

Theme: Efficient numerical resolution of temperature equation

$$\partial_t \tilde{T} - \frac{1}{\varepsilon} \nabla_{||} \cdot (K_{||} \tilde{T}^{5/2} \nabla_{||} \tilde{T}) - \nabla_{\perp} \cdot (K_{\perp} \nabla_{\perp} \tilde{T}) = 0,$$

where $\tilde{T} := \frac{T}{||T||_{\infty}}$ and $\varepsilon := \frac{1}{||T||_{\infty}^{5/2}} \ll 1 \rightarrow \text{Anisotropic, degenerate}$ nonlinear parabolic equation

$$P_{\varepsilon} \left\{ \begin{array}{l} \partial_{t}T - \frac{1}{\varepsilon} \nabla_{||} \cdot (K_{||}T^{5/2} \nabla_{||}T) - \nabla_{\perp} \cdot (K_{\perp} \nabla_{\perp}T) = 0, \quad \text{in} \quad [0, S] \times \Omega, \\ \frac{1}{\varepsilon} n_{||} \cdot (K_{||}T^{5/2}(t, \cdot) \nabla_{||}T(t, \cdot)) + n_{\perp} \cdot (K_{\perp} \nabla_{\perp}T(t, \cdot)) = -\gamma T(t, \cdot), \quad \text{on} \quad [0, S] \times \Gamma_{\perp}, \\ \nabla_{\perp}T(t, \cdot) = 0, \quad \text{on} \quad [0, S] \times \Gamma_{||}, \qquad 0 < \varepsilon \ll 1 \\ T(0, \cdot) = T_{0}(\cdot), \quad \text{in} \quad \Omega. \end{array} \right.$$

$$v_{||} := (v \cdot b)b, \qquad v_{\perp} := (Id - b \otimes b)v, \\ \nabla_{||}\phi := (b \cdot \nabla \phi)b, \qquad \nabla_{\perp}\phi := (Id - b \otimes b)\nabla \phi, \\ \nabla_{||}\phi := (b \cdot \nabla \phi)b, \qquad \nabla_{\perp}\phi := (Id - b \otimes b)\nabla \phi, \\ \nabla_{||} \cdot v := \nabla \cdot v_{||}, \qquad \nabla_{\perp} \cdot v := \nabla \cdot v_{\perp}. \end{array}$$

$$\Gamma_{||} := \{x \in \Gamma / b(x) \cdot n(x) = 0\}, \\ \Gamma_{\perp} = \Gamma_{in} \cup \Gamma_{out} := \{x \in \Gamma / b(x) \cdot n(x) < 0\} \cup \{x \in \Gamma / b(x) \cdot n(x) > 0\}.$$

• Putting formally $\varepsilon = 0$ in (P_{ε}) , yields

$$(R) \begin{cases} -\nabla_{||} \cdot (K_{||}T^{5/2}\nabla_{||}T) = 0, & \text{in} \quad [0,S] \times \Omega, \\ n_{||} \cdot (K_{||}T^{5/2}(t,\cdot)\nabla_{||}T(t,\cdot)) = 0, & \text{on} \quad [0,S] \times \Gamma_{\perp}, \\ \nabla_{\perp}T(t,\cdot) = 0, & \text{on} \quad [0,S] \times \Gamma_{||}, \\ T(0,\cdot) = T^{0}(\cdot), & \text{in} \quad \Omega. \end{cases}$$

 \rightarrow (R) is an ill-posed pb., admitting infinitly many solutions! \rightarrow (P_{\varepsilon}) is a so-called singularly perturbed problem

Aim: Development of an asymp.-preserv. scheme for the resol. of (P_{ε}) , which is

- accurate independent on ε
- capable to capture the limit model (P_0) , for $\varepsilon \to 0$
- functional on cartesian grids, which have not to be adapted to the field lines

Mathematical results (Weak solution)

• More general formulation $(A_{||}, A_{\perp} \text{ satisfy pos., boundedness + coercivity cond.})$

$$(P_m) \begin{cases} \partial_t u - \nabla_{||} \cdot (A_{||} |u|^{m-1} \nabla_{||} u) - \nabla_{\perp} \cdot (A_{\perp} \nabla_{\perp} u) = 0, & \text{in} \quad [0, S] \times \Omega, \\ A_{||} |u|^{m-1} n_{||} \cdot \nabla_{||} u + A_{\perp} n_{\perp} \cdot \nabla_{\perp} u = -\gamma u, & \text{on} \quad [0, S] \times \Gamma_{\perp}, \\ \nabla_{\perp} u = 0, & \text{on} \quad [0, S] \times \Gamma_{||}, \\ u(0, \cdot) = u^0(\cdot), & \text{in} \quad \Omega, \end{cases}$$

• Weak solution: Let $u^0 \in L^{\infty}(\Omega)$, $Q_T := (0,T) \times \Omega$, $\mathcal{V} := H^1(\Omega)$, $\mathcal{D} = L^2(0,T;\mathcal{V})$

$$\mathcal{W} := \left\{ u \in L^{\infty}(Q_{\infty}), \text{ such that } \forall T > 0 \\ \nabla_{\perp} u \in L^{2}(Q_{T}), \quad |u|^{m-1} \nabla_{||} u \in L^{2}(Q_{T}), \quad \partial_{t} u \in L^{2}(0,T;\mathcal{V}^{*}) \right\}.$$

 $u \in \mathcal{W}$ is called a weak solution of (P_m) , if $u(0, \cdot) = u^0$ and if $\forall T > 0$:

$$\begin{split} &\int_{0}^{T} \langle \partial_{t} u(t,\cdot), \phi(t,\cdot) \rangle_{\mathcal{V}^{*},\mathcal{V}} \, dt + \int_{0}^{T} \int_{\Omega} A_{||} |u|^{m-1} \nabla_{||} u \cdot \nabla_{||} \phi \, dx dt \\ &+ \int_{0}^{T} \int_{\Omega} A_{\perp} \nabla_{\perp} u \cdot \nabla_{\perp} \phi \, dx dt + \gamma \int_{0}^{T} \int_{\Gamma_{\perp}} u \phi \, d\sigma \, dt = 0, \quad \forall \phi \in \mathcal{D} \end{split}$$

• Theorem: Let $m \ge 1$, $u^0 \in L^{\infty}(\Omega)$ and $0 < \beta \le u^0 \le M < \infty$ on Ω

⇒ \exists ! weak solution $u \in \mathcal{W}$ of (P_m) , satisfying $ce^{-Kt} \leq u \leq M$ a.e. on Q_{∞} , with a suff. small c > 0 and a suff. large K > 0.

• Proof:

- Regularization + fixed point argument: $a_{\alpha}(u) := [\alpha + \min(|u|, M)]^{m-1} \text{ for fixed } 0 < \alpha < 1$ $\Rightarrow \exists ! u_{\alpha} \in W_{2}^{1}(0, S; H^{1}(\Omega), L^{2}(\Omega))$
- \blacksquare A priori estimates: indep. on α
- Passage to the limit: $\alpha \to 0 \Rightarrow$ existence of $u \in \mathcal{W}$
- Positivity and uniqueness (Comparision principle + Construction of a weak sub-solution)

• Singularly perturbed problem: Find $T(t, \cdot) \in \mathcal{V} := H^1(\Omega)$

$$\begin{split} \langle \partial_t T(t,\cdot), v \rangle_{\mathcal{V}^*,\mathcal{V}} + \frac{1}{\varepsilon} \int_{\Omega} K_{||} |T|^{5/2} \nabla_{||} T(t,\cdot) \cdot \nabla_{||} v \, dx \\ + \int_{\Omega} K_{\perp} \nabla_{\perp} T(t,\cdot) \cdot \nabla_{\perp} v \, dx + \gamma \int_{\Gamma_{\perp}} T(t,\cdot) v \, d\sigma = 0, \quad \forall v \in \mathcal{N} \end{split}$$

• Asymp.-Preserv. reform.: Find $(T(t, \cdot), q(t, \cdot)) \in \mathcal{V} \times \mathcal{L}$

 (P_{ε})

$$(AP) \begin{cases} \langle \partial_t T, v \rangle_{\mathcal{V}^*, \mathcal{V}} + \int_{\Omega} (K_{\perp} \nabla_{\perp} T) \cdot \nabla_{\perp} v \, dx + \int_{\Omega} K_{||} \nabla_{||} q \cdot \nabla_{||} v \, dx + \gamma \int_{\Gamma_N} T v \, d\sigma = 0 \,, \\ \forall v \in \mathcal{V} \\ \int_{\Omega} K_{||} T^{5/2} \nabla_{||} T \cdot \nabla_{||} w \, dx - \int_{\Omega} \varepsilon K_{||} \nabla_{||} q \cdot \nabla_{||} w \, dx = 0, \quad \forall w \in \mathcal{L} \,. \end{cases}$$

Idea: Introduction of auxiliary variable $q_{\varepsilon} \in \mathcal{L}$, such that $\nabla_{||} q_{\varepsilon} = \frac{1}{\varepsilon} T_{\varepsilon}^{5/2} \nabla_{||} T_{\varepsilon}$

$$\mathcal{L} := \{ q \in L^2(\Omega) / \nabla_{\parallel} q \in L^2(\Omega) \text{ and } q |_{\Gamma_{in}} = 0 \}.$$

• Putting formally $\varepsilon = 0$ in (AP), yields

$$(L) \begin{cases} \langle \partial_t T, v \rangle_{\mathcal{V}^*, \mathcal{V}} + \int_{\Omega} (K_{\perp} \nabla_{\perp} T) \cdot \nabla_{\perp} v \, dx + \int_{\Omega} K_{\parallel} \nabla_{\parallel} q \cdot \nabla_{\parallel} v \, dx + \gamma \int_{\Gamma_{\perp}} Tv \, ds = 0, \\ \forall v \in \mathcal{V} \\ \int_{\Omega} K_{\parallel} T^{5/2} \nabla_{\parallel} T \cdot \nabla_{\parallel} w \, dx = 0, \quad \forall w \in \mathcal{L} \end{cases}$$

- Limit-pb. is a well-posed saddle point problem
- \blacksquare q acts as a Lagrangian for the constraint $T(t, \cdot) \in \mathcal{G}$

$$\mathcal{G} := \{ p \in \mathcal{V} \ / \ \nabla_{\parallel} p = 0 \text{ in } \Omega \}$$

this q provides the uniqueness of the solution Indeed, the sequence $T^{\varepsilon}(t, \cdot)$ tends in the limit $\varepsilon \to 0$ towards the sol. of

$$(L) \ \langle \partial_t T(t,\cdot), v \rangle_{\mathcal{V}^*,\mathcal{V}} + \int_{\Omega} K_{\perp} \nabla_{\perp} T(t,\cdot) \cdot \nabla_{\perp} v \, dx + \gamma \int_{\Gamma_{\perp}} T(t,\cdot) v \, d\sigma = 0, \quad \forall v \in \mathcal{G}$$

Semi-discretization in time (Euler implicit)

$$(AP) \begin{cases} \langle \partial_t T, v \rangle_{\mathcal{V}^*, \mathcal{V}} + \int_{\Omega} (K_{\perp} \nabla_{\perp} T) \cdot \nabla_{\perp} v \, dx + \int_{\Omega} K_{||} \nabla_{||} q \cdot \nabla_{||} v \, dx + \gamma \int_{\Gamma_N} T v \, d\sigma = 0 \,, \\ \forall v \in \mathcal{V} \\ \int_{\Omega} K_{||} T^{5/2} \nabla_{||} T \cdot \nabla_{||} w \, dx - \int_{\Omega} \varepsilon K_{||} \nabla_{||} q \cdot \nabla_{||} w \, dx = 0, \quad \forall w \in \mathcal{L} \,. \end{cases}$$

$$\begin{aligned} (\Theta, \chi) &:= \int_{\Omega} \Theta \chi \, dx \,, \quad a_{\parallel nl}(\Psi, \Theta, \chi) := \int_{\Omega} K_{\parallel} \Psi^{5/2} \nabla_{\parallel} \Theta \cdot \nabla_{\parallel} \chi \, dx \,, \\ a_{\parallel}(\Theta, \chi) &:= \int_{\Omega} K_{\parallel} \nabla_{\parallel} \Theta \cdot \nabla_{\parallel} \chi \, dx \,, \qquad a_{\perp}(\Theta, \chi) := \int_{\Omega} K_{\perp} \nabla_{\perp} \Theta \cdot \nabla_{\perp} \chi \, dx \,, \end{aligned}$$

Find $(T_h^{n+1}, q_h^{n+1}) \in \mathcal{V}_h \times \mathcal{L}_h \subset \mathcal{V} \times \mathcal{L}$, solution of:

$$(E_{AP}) \begin{cases} (T_{h}^{n+1}, v_{h}) + \tau \left(a_{\perp}(T_{h}^{n+1}, v_{h}) + a_{\parallel}(q_{h}^{n+1}, v_{h}) + \gamma \int_{\Gamma_{\perp}} T_{h}^{n+1} v_{h} \, ds \right) = (T_{h}^{n}, v_{h}) \\ \forall v_{h} \in \mathcal{V}_{h} \\ a_{\parallel nl}(T_{h}^{n}, T_{h}^{n+1}, w_{h}) - \varepsilon a_{\parallel}(q_{h}^{n+1}, w_{h}) = 0, \quad \forall w_{h} \in \mathcal{L}_{h} \, . \end{cases}$$

35

- Implicit Euler time-discretization:
 - **first** order scheme in time + **AP**-scheme
- Crank-Nicolson time-discretization:
 - second order scheme in time
 - \blacksquare A-stable, but not L-stable \Rightarrow not AP !
 - restrictive time-step $\Delta t \sim \frac{\varepsilon}{(T^n)^{5/2}}$
- Diagonally implicit Runge-Kutta (DIRK) time-discretization:
 - second order scheme in time
 - A-stable and L-stable
 - 2 syst. to be solved $\Rightarrow 2$ times slower than CN, but AP !

- Magnetic field: $b = \frac{B}{|B|}$, $B = \begin{pmatrix} \alpha(2y-1)\cos(\pi x) + \pi \\ \pi\alpha(y^2 y)\sin(\pi x) \end{pmatrix}$
- Initial condition: (a) Constr. of analytic solution

(b) Gaussian peak: $T(t = 0, x, y) = \frac{T_m}{2} \left(1 + e^{-50(x - 0.5)^2 - 50(y - 0.5)^2} \right) ,$

• Cartesian grids, finite element method (\mathbb{Q}_2 -FEM)

 L^2 -errors between the exact and num. sol. as a function of ε

37

Numerical results

• Magn. field lines: can be closed in real tokamak plasma simulations \Rightarrow Difficulties in using previous AP-scheme, due to determination of auxiliary var. q_{ε} such that $\nabla_{||}q_{\varepsilon} = \frac{1}{\varepsilon}T_{\varepsilon}^{5/2}\nabla_{||}T_{\varepsilon}$

$$\mathcal{L} := \{ q \in L^2(\Omega) / \nabla_{\parallel} q \in L^2(\Omega) \text{ and } q|_{\Gamma_{in}} = 0 \}.$$

• Example of magn. field lines:

 $B = \nabla \times (\psi(x,y)e_z) + B(x,y)e_z \,, \quad \psi(x,y) = \cos(x) + A\cos(y - \omega t)$

Asymptotic Preserving method

- Idea: Introduction of a stabilization term $(AP)_{h}^{1} \begin{cases} \langle \partial_{t}T_{h}, v_{h} \rangle + \int_{\Omega} (K_{\perp} \nabla_{\perp} T_{h}) \cdot \nabla_{\perp} v_{h} \, dx + \int_{\Omega} K_{\parallel} \boldsymbol{q}_{h} \cdot \nabla_{\parallel} v_{h} \, dx + \gamma \int_{\Gamma_{\perp}} T_{h} v_{h} \, ds = 0, \\ \forall v_{h} \in \mathcal{V}_{h} \\ \int_{\Omega} K_{\parallel} T_{h}^{5/2} \nabla_{\parallel} T_{h} \cdot w_{h} \, dx - \varepsilon \int_{\Omega} K_{\parallel} \boldsymbol{q}_{h} w_{h} \, dx = 0 \end{cases}$ $(AP)_{h}^{2} \begin{cases} \langle \partial_{t}T_{h}, v_{h} \rangle + \int_{\Omega} (K_{\perp} \nabla_{\perp} T_{h}) \cdot \nabla_{\perp} v_{h} \, dx + \int_{\Omega} K_{\parallel} \nabla_{\parallel} q_{h} \cdot \nabla_{\parallel} v_{h} \, dx + \gamma \int_{\Gamma_{\perp}} T_{h} v_{h} \, ds = 0, \\ \forall v_{h} \in \mathcal{V}_{h} \\ \int_{\Omega} K_{\parallel} T_{h}^{5/2} \nabla_{\parallel} T_{h} \cdot \nabla_{\parallel} w_{h} \, dx - \varepsilon \int_{\Omega} K_{\parallel} \nabla_{\parallel} q_{h} \cdot \nabla_{\parallel} w_{h} \, dx = h^{3} \int_{\Omega} q_{h} w_{h} \, dx, \end{cases}$
 - Advantages:
 - Permits to determine uniquely q_h , without imposing Dirichlet B.C. on the inflow boundary Γ_{in}
 - permits to treat closed field lines

Numerical results

- Singularly perturbed problems:
 - contain small parameters, that lead to various asymptotic regimes
 - classical schemes become too expensive, and even"unusable" in the limit regime
- Asymptotic-Preserving methodology:
 - offers simple, robust and efficient num. meth. for large class of singularly perturbed pb.
 - preserves at discrete level the limit asymptotics
 - solves the microscale, and automatically switches to a macroscopic solver for the limit pb.