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Equations for the electrons and the electromagnetic field

Equations shown in the paper of White and Chen.
System of equations, B0 = |B0|ez:

∇∧ E = iωB
c2∇∧B = −4πn0(x)ev − iωE
−iωJ = ε0(ωp(x))2E − ωcJ ∧ ez − νJ

where J = −4πε0n0(x)ev:

(ωp(x))2 =
4πe2

m
n0(x)

is the plasma oscillation frequency of electrons,

ωc =
e|B0|
m

is the cyclotron frequency.
Note the classical equation c2∇∧B = 1

ε0
J − iωE.
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System of Chen and White (II)

Solutions with eik0 sin θ0y. (Properties of invariance of py because
no dependency of the symbol in y). Total system

iωB1 = ik0 sin θ0E3

iωB2 = −E′3
iωB3 = E′2 − ik0 sin θ0E1

c2(ik0 sin θ0B3) = j1 − iωE1

c2(−B′3) = j2 − iωE2

c2(B′2 − ik0 sin θ0B1) = j3 − iωE3

−iωj1 = ω2
p(x)E1 − ωcj2 − νj1

−iωj2 = ω2
p(x)E2 + ωcj1 − νj2

−iωj3 = ω2
p(x)E3 − νj3
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System of Chen and White (III)

Solutions with eik0 sin θ0y. (Properties of invariance of py because
no dependency of the symbol in y). Total system
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iωB3 = E′2 − ik0 sin θ0E1

c2(−B′3) = j2 − iωE2

j1 − iωE1 = c2(ik0 sin θ0B3)
ω2
p(x)E1 − ωcj2 + (iω − ν)j1 = 0

−ωcj1 − (iω − ν)j2 = ω2
p(x)E2

−iωj3 = ω2
p(x)E3 − νj3

iωB1 = ik0 sin θ0E3
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Replacing j3 and cB1(= sin θ0E3) in terms of E3, one obtains{
E′3 = −ik0(cB2)

(cB2)
′ = ik0[sin

2 θ0 − 1 +
(ωp(x))2

iω(−iω+ν) ]E3

Ordinary modes. Current density j3 = (−iω + ν)−1(ωp(x))2E3.
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The rest of the system contains E′2, (cB3)
′. One seeks (j1, j2, E1)

in terms of E2, cB3. The system is
(iω − ν)j1 −ωcj2 +ω2

p(x)E1 = 0

ωcj1 +(iω − ν)j2 = −ω2
p(x)E2

1
iω j1 −E1 = sin θ0cB3

Determinant dν = (ω2
h(x) + ν2 − ω2) + ν

iω (2ω2 − ω2
p(x)), with

ω2
h(x) = ω2

c + ω2
p(x).

Apart from the root ω = 0, root ω − ωh ' iν(
ω2
p

2ω2
h
− 1).

On (j1, j2):{
(iω − ν +

ω2
p

iω )j1 − ωcj2 = sin θ0ω
2
p(cB3)

ωcj1 + (iω − ν)j2 = −ω2
pE2

with E1 = − sin θ0cB3 + (iω)−1j1.
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Resulting system from{
E′2 = ik0[

sin θ0
iω j1 + (1− sin2 θ0)cB3]

(cB3)
′ = ik0[E2 − (iω)−1j2]

yields

E′2 = ik0[−
ωcω

2
p

iωdν
sin θ0E2 + (1− sin2 θ0(1−

(iω − ν)ω2
p

iωdν
))cB3]

(cB3)
′ = ik0[(1 +

ω2
p(iω − ν +

ω2
p

iω )

iωdν
)E2 +

sin θ0ωcω
2
p

iωdν
cB3].

Recall the electric current j:{
dνj1 = ω2

p[−ωcE2 + (iω − ν) sin θ0(cB3)]

dνj2 = −ω2
p[(iω − ν +

ω2
p

iω )E2 + ωc sin θ0(cB3)]

No need for an extra differential equation for E1, thanks to:

E1 = − sin θ0cB3 + (iω)−1j1.



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Resulting system from{
E′2 = ik0[

sin θ0
iω j1 + (1− sin2 θ0)cB3]

(cB3)
′ = ik0[E2 − (iω)−1j2]

yields

E′2 = ik0[−
ωcω

2
p

iωdν
sin θ0E2 + (1− sin2 θ0(1−

(iω − ν)ω2
p

iωdν
))cB3]

(cB3)
′ = ik0[(1 +

ω2
p(iω − ν +

ω2
p

iω )

iωdν
)E2 +

sin θ0ωcω
2
p

iωdν
cB3].

Recall the electric current j:{
dνj1 = ω2

p[−ωcE2 + (iω − ν) sin θ0(cB3)]

dνj2 = −ω2
p[(iω − ν +

ω2
p

iω )E2 + ωc sin θ0(cB3)]

No need for an extra differential equation for E1, thanks to:

E1 = − sin θ0cB3 + (iω)−1j1.



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Resulting system from{
E′2 = ik0[

sin θ0
iω j1 + (1− sin2 θ0)cB3]

(cB3)
′ = ik0[E2 − (iω)−1j2]

yields

E′2 = ik0[−
ωcω

2
p

iωdν
sin θ0E2 + (1− sin2 θ0(1−

(iω − ν)ω2
p

iωdν
))cB3]

(cB3)
′ = ik0[(1 +

ω2
p(iω − ν +

ω2
p

iω )

iωdν
)E2 +

sin θ0ωcω
2
p

iωdν
cB3].

Recall the electric current j:{
dνj1 = ω2

p[−ωcE2 + (iω − ν) sin θ0(cB3)]

dνj2 = −ω2
p[(iω − ν +

ω2
p

iω )E2 + ωc sin θ0(cB3)]

No need for an extra differential equation for E1, thanks to:

E1 = − sin θ0cB3 + (iω)−1j1.



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Resulting system from{
E′2 = ik0[

sin θ0
iω j1 + (1− sin2 θ0)cB3]

(cB3)
′ = ik0[E2 − (iω)−1j2]

yields

E′2 = ik0[−
ωcω

2
p

iωdν
sin θ0E2 + (1− sin2 θ0(1−

(iω − ν)ω2
p

iωdν
))cB3]

(cB3)
′ = ik0[(1 +

ω2
p(iω − ν +

ω2
p

iω )

iωdν
)E2 +

sin θ0ωcω
2
p

iωdν
cB3].

Recall the electric current j:{
dνj1 = ω2

p[−ωcE2 + (iω − ν) sin θ0(cB3)]

dνj2 = −ω2
p[(iω − ν +

ω2
p

iω )E2 + ωc sin θ0(cB3)]

No need for an extra differential equation for E1, thanks to:

E1 = − sin θ0cB3 + (iω)−1j1.



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Structure

(
E3

cB2

)′
= ik0Mo(x)

(
E3

cB2

)
,

(
E2

cB3

)′
= ik0MX(x)

(
E3

cB2

)
.

where

Mo(x) =

(
0 −1

sin2 θ0 − 1 +
ω2
p

ω2+iων
0

)
=

(
0 −1

sin2 θ0 − εν(x) 0

)
,

MX =

(
−aν(x) bν(x)
cν(x) aν(x)

)
.

where the coefficients of MX have a simple pole at ω = ωh when
ν = 0. and detMX has also a simple pole.
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Turning points
Ordinary mode E′′3 = k20(1− sin2 θ0 −

ω2
p(x)

ω2+iων
)E3

(no additional issue, classical turning point analysis).
Assume that ωp(x)2 is strictly increasing and that there exists a
unique point x0 such that ω2

p(x0) = ω2 cos2 θ0
Complex phase ρν solution of

−(ρ′ν(x))2ρν(x) = 1−sin2 θ0−
ω2
p(x)

ω2 + iων
= ε(x)−sin2 θ0+

iωp
ω(ω2 + iων)

ν

Let xν be the unique point (ν small) such that

εν(xν) = sin2 θ0

Then
ρν(x) = rν(x)(x− xν), with rν(xν) 6= 0.

rν(x) = (

∫ 2

0
s

1
2
∂xω

2
p(xν + s(x− xν))

ω2 + iων
ds)

2
3
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Reduction of the system (discussions with M. Williams)
Equation:

E′′ − 3 = −k20(ρ′ν(x))2ρν(x)E3

New variable X = ρν(x)

X ′(x)
d

dX
(X ′(x)

dE3

dX
) = −k20(X ′(x))2X(x)E3

Introduce w = (X ′(x))
1
2E3,

(X ′(x))
1
2
d2

dX2
((X ′(x))

1
2E3) =

d

dX
(X ′(x)

dE3

dX
)+(X ′(x))

1
2
d2

dX2
((X ′(x))

1
2 )E3

Rewrite then

d2w

dX2
= −k20(X + k−20 θ(X))w ⇔ d2w

dT 2
= −(T + k

− 2
3

0 h(T ))w

Wasov’s conjugation lemma for k−20 small reduces exactly to the
Airy equation.
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Extraordinary mode, normal incidence

Simplification sin θ0 = 0

System M θ0=0
X =

 0 1

1 +
ω2
p(iω−ν+

ω2p
iω

)

iωdν
0

.

Usual ODE:
E′′2 = −k20εX(x)E2,

Observe

εX(x) = −
(ω2
p(x)− ω2 − iων)2 − ω2ω2

c

dνω2

No additional issue for points such that εX(x) = 0 for ν = 0: it is
still a turning point.
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Points where εX(x) is singular:εX(x) = k(x)
x−xX

d

dx
(
dE2

dx
) = −k20

k(xX)

x− xX
(1 + (x− xX)2g((x− xX)2))E2

New variable x− xX = y2 (right)

y2
1

2y

d

dy
(

1

2y

dE2

dy
) = −k20k(xX)(1 + y2g(y2))E2

y2
d2E2

dy2
− ydE2

dy
+ 4k20k(xX)y2(1 + y2g(y2))E2 = 0.

If one removes the additional term, Bessel equation. Solutions

Ẽ2 = C1Y0(2k0(k(xX))
1
2 (x−xX)

1
2 )+C2J0(2k0(k(xX))

1
2 (x−xX)

1
2 ).

Ẽ2 contains ln(x− xX) and cB̃3 contains 1
x−xX . WIP
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General case
We look at U ′ = ik0M(x)U . First observation: TrM0(x) = 0,
otherwise change the unknown. General case is:

M(x) =

(
−a(x) b(x)
c(x) a(x)

)
.

Explicit calculation:

u2 = 1
ik0

u′1
b + a

bu1 ⇒ ( 1
ik0

u′1
b + a

bu1)
′ = ik0cu1 + ik0a( 1

ik0

u′1
b + a

bu1).

(
u′1
b

)′ + ik0(
a

b
)′u1 = −k20

bc+ a2

b
u1.

With w = b−
1
2u1, yields

w′′ = [−k20(cb+ a2)− ik0b(
a

b
)′ + (

3

4
(
b′

b
)2 − 1

2

b′′

b
)]w

Similarily, on v = c−
1
2u2

v′′ = [−k20(cb+ a2) + ik0c(
a

c
)′ + (

3

4
(
c′

c
)2 − 1

2

c′′

c
]v.
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Alternate analysis

U =
1

2π

∫ (
σ0(x, θ)
σ1(x, θ)

)
eik0(ρ(x)θ−

θ3

3
)dθ.

U ′ =
1

2π

∫
[ik0ρ

′(x)θ

(
σ0(x, θ)
σ1(x, θ)

)
+

(
σ0(x, θ)
σ1(x, θ)

)′
]eik0(ρ(x)θ−

θ3

3
)dθ.

bc+ a2 = (ρ′)2ρ

Note that det(M θ0=0
X − ρ′θId) = (ρ′θ)2 − a2 − bc.

Determinant vanishes for θ2 = ρ. Eigenvalues λ = −ρ′θ ± ρ′ρ
1
2

(complex representation).
Method (WIP) Basis of eigenvectors, and express the solution for
the system.
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Some partial conclusions

• A simplified version of the full system
• Bessel functions for the representation of extraordinary modes.
⇒ we recover the behavior in 1

x−xX for a part of the solution
(WIP).
• Airy function-type analysis for the turning point for the 2-2
system
⇒ Better than considering the second order ODE (s)? WIP.
• Appearing also in the stability of detonations (Erpenbeck)
(Williams, Zumbrun).
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Model studied in BLSS (I)
In the case of a scalar vector potential, we wrote

∇(∇A) + k20(1−N(x))A+ iνk0A = 0.

The wave number k0 was imposed by the scaling on the
adimensional electronic density N(x) ∈ [0, 1[.
Equations supplemented by an incident known wave and a
radiation boundary condition.
Classical WKB approximation (as presented also by O. Maj in
October 2012):

A = (a0 + (ik0)
−1a1 + ...)eik0ϕ

Assumption k0 >> 1.
Leading order term in k20 vanishes:
N(x)− 1 + |∇ϕ|2 = 1: eikonal equation (Hamilton-Jacobi).
Next order term in k10 vanishes:
νa0 + 2∇a0∇ϕ+ a0∇.(∇ϕ) = 0: transport equation.
Rewrites as νE + div(E∇ϕ) = 0, E = |a0|2, νE is the absorbed
laser energy.
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Model BLSS (II)
We assume N depending only on x.
The model is supplemented by incident conditions on
Γinc = {x = 0}:

a0(0, y, z) = eik0 sinα(cosϕy+sinϕz)

∇a0(0, y, z) = (cosα, sinα cosϕ, sinα sinϕ)a0(0, y, z)

Elementary example: N(x) = x:
Propagation of
singularities:⇒ A(x, y, z) = A(x)eik0 sinα(cosϕy+sinϕz),
Equation on A:

A′′ + k20(cos2 α− x)A+ iνk0A = 0.

Writes(
A

(ik0)
−1A′

)′
= ik0

(
0 1

cos2 α− x+ iν
k0

0

)(
A

(ik0)
−1A′

)
.
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Model of BLSS (III)
Explicit solutions

A = C1Ai(k
2
3
0 (x− cos2 α− iν

k0
)) + C2Bi(k

2
3
0 (x− cos2 α− iν

k0
))

where Ai and Bi: pair of fundamental solutions of u′′ = zu, Ai

being the one which Fourier transform is ei
t3

3 , and Bi being
another solution, Bi→ +∞ at +∞.
Behavior at |z| → ∞, |arg(x)| < 2

3π:

Ai(z) ' Kz−
1
4 e−

2
3
z
3
2 , Bi(z) ' Kz−

1
4 e

2
3
z
3
2 .

For x− cos2 α >
√

3 ν
k0

, one has <2
3z

3
2 → +∞, radiation condition

imply C2 = 0.

A(x, y, z) = C0Ai(k
2
3
0 (x− cos2 α− iν

k0
))eik0 sinα(cosϕy+sinϕz).

It is the ’ordinary mode’ as described in Chen-White (eq (16),
(17)).
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It is the ’ordinary mode’ as described in Chen-White (eq (16),
(17)).



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Model of BLSS (III)
Explicit solutions

A = C1Ai(k
2
3
0 (x− cos2 α− iν

k0
)) + C2Bi(k

2
3
0 (x− cos2 α− iν

k0
))

where Ai and Bi: pair of fundamental solutions of u′′ = zu, Ai

being the one which Fourier transform is ei
t3

3 , and Bi being
another solution, Bi→ +∞ at +∞.
Behavior at |z| → ∞, |arg(x)| < 2

3π:

Ai(z) ' Kz−
1
4 e−

2
3
z
3
2 , Bi(z) ' Kz−

1
4 e

2
3
z
3
2 .

For x− cos2 α >
√

3 ν
k0

, one has <2
3z

3
2 → +∞, radiation condition

imply C2 = 0.

A(x, y, z) = C0Ai(k
2
3
0 (x− cos2 α− iν

k0
))eik0 sinα(cosϕy+sinϕz).

It is the ’ordinary mode’ as described in Chen-White (eq (16),
(17)).



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Model of BLSS (III)
Explicit solutions

A = C1Ai(k
2
3
0 (x− cos2 α− iν

k0
)) + C2Bi(k

2
3
0 (x− cos2 α− iν

k0
))

where Ai and Bi: pair of fundamental solutions of u′′ = zu, Ai

being the one which Fourier transform is ei
t3

3 , and Bi being
another solution, Bi→ +∞ at +∞.
Behavior at |z| → ∞, |arg(x)| < 2

3π:

Ai(z) ' Kz−
1
4 e−

2
3
z
3
2 , Bi(z) ' Kz−

1
4 e

2
3
z
3
2 .

For x− cos2 α >
√

3 ν
k0

, one has <2
3z

3
2 → +∞, radiation condition

imply C2 = 0.

A(x, y, z) = C0Ai(k
2
3
0 (x− cos2 α− iν

k0
))eik0 sinα(cosϕy+sinϕz).

It is the ’ordinary mode’ as described in Chen-White (eq (16),
(17)).



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Model of BLSS (IV): condition outside the plasma
For x = 0,

A(0, y, z) = C0Ai(−k
2
3
0 cos2 α− iνk−

1
3

0 )eik0 sinα(cosϕy+sinϕz).

For x ≤ 0, C ′′ + k20 cos2 αC = 0 (no absorption in the vacuum).
Choice of C(x) = eik0 cosαx as solution. No exact match but

Ai(−Z) ' π−
1
2Z−

1
4 (sin(23Z

3
2 + π

4 ) +O(Z−
3
2 ))⇒

A(0, y, z) ' C0
2 π
− 1

2k
− 1

6
0 (cos2 α+ iν

k0
)−

1
6 (e
− iπ

4
+i 2

3
(cos2 α+ iν

k0
)
3
2 k0 +

e
iπ
4
−i 2

3
(cos2 α+ iν

k0
)
3
2 k0 + ...)eik0 sinα(cosϕy+sinϕz).

If one wants to have the incoming wave:

C0

2
π−

1
2k
− 1

6
0 (cos2 α+

iν

k0
)−

1
6 e
− iπ

4
+i 2

3
(cos2 α+ iν

k0
)
3
2 k0 = 1.

A(x, y, z) = 2π
1
2k

1
6
0 e

ik0 sinα(cosϕy+sinϕz− 2
3
(cos2 α+ iν

k0
)
3
2 )+iπ

4

×Ai(k
2
3
0 (x− cos2 α)− iνk−

1
3

0 )(cos2 α+ iν
k0

)
1
6
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y ′(s) = ∇ϕ(Y (s)) = P (s).

d

ds
(a0(Y (s)) = −a0(Y (s))∆ϕ(Y (s))− νa0(Y (s))

and
(P (s))2 +N(Y (s))−1 = 0⇒ 2P (s)P ′(s)+∇N(Y (s)).Y ′(s) = 0.
Natural choice P ′(s) = 1

2∇(1−N)(Y (s)).

General case: operator with variable coeffs p(x,Dx), Dx = 1
ik0

∂
∂x :

p(x,Dx)(Aeik0ϕ) = p(x,∇ϕ)a0(x) +O(k−10 ).

System of rays (bicharacteristics):
dX
ds = ∇ξp(X(s), P (s)), dPds = −∇xp(X(s), P (s)).

Property (flavor of a theorem): The high frequency singularities of
a solution of Pu = 0 belong to integral curves of the previous
system.
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