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Equations for the electrons and the electromagnetic field

Equations shown in the paper of White and Chen.
System of equations, By = | Byle.:

VAE =iwB
AV A B = —4mng(x)ev — iwE
—iwJ = eo(wp(1))?’E —weJ Aey —vJ

where J = —4megng(z)ev:

4rre?

(wp(2))? =

is the plasma oscillation frequency of electrons,

no(x)

e| By

m

c =

is the cyclotron frequency.
Note the classical equation ¢?V A B = %J —iwk.
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System of Chen and White (I1)

Solutions with ¢?*0sn%Y  (Properties of invariance of py because
no dependency of the symbol in y). Total system

( ’inl = ik‘o sin (90E3

’ing = —Eé

ing = Eé — iko sin 90E1

2 (ikosin 0y B3) = j1 — iwE;
A(—BY) = ja — iwks

CQ(Bé — ik‘(] sin HOBl) = j3 - ing
—iwj; = wg(x)El — Wejo — V1
—iwjs = w2 () By 4+ weji — via

(| —iwjz = wy(z) B3 — vj3
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System of Chen and White (I1)

Solutions with et*osinfoy (Properties of invariance of p, because
no dependency of the symbol in y). Total system

;

’ing = —Eé
CQ(Bé — ikjg sin 9031) = j3 — ing

ing = Eé — iko sin 00E1
CQ(—B:/))) = jQ — ’inQ

2 (iko sin 0o B3) = j1 — iwE;
—iwji = wy () B1 — wej2 — Vi1
—iwjy = wy () B2 + wej1 — Via

—iwjz = wi(x)E3 — vj3
inl = iko sin HoEg




Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

System of Chen and White (III)

Solutions with et*osinfoy (Properties of invariance of p, because
no dependency of the symbol in y). Total system

;

’ing = —Eé
CQ(Bé — ikjg sin 9031) = j3 — ing

ing = Eé — iko sin 00E1
CQ(—B:/))) = jQ — ’inQ

J1 — iwEy = ?(ikq sin 0o B3)
wg(x)El — wch + (iw — V)jl =0
~weji = (iw = v)j2 = wp(2) By

—iwjz = wi(x)E3 — vj3
inl = iko sin HoEg
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Replacing js and ¢Bj(= sinfyFE3) in terms of E3, one obtains

Eé = —iko(ch) 2
(cBs) = iko[sin? 0y — 1 + M]Eg

iw(—iw+v)

Ordinary modes. Current density jz = (—iw + /)~ (w,(z))?E;.



Original electromagnetic equations

The rest of the system contains E}, (¢Bs)’. One seeks (j1, j2, F1)
in terms of Eo,cBs. The system is

(iw—v)j1  —wejo +wi(z)Er =0
Wej1 +(iw —v)j2 = —wp(z) B2
%jl —FE; = sin fycBs

Determinant d, = (w?(z) + v? — w?) +

e s (Qwawg(x)),with
wi(z) = wg + wy ().

v
1w
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Original electromagnetic equations

The rest of the system contains E}, (¢Bs)’. One seeks (j1, j2, F1)
in terms of Eo,cBs. The system is

(iw—v)j1  —wejo +wi(z)Er =0
Wej1 +(iw —v)j2 = —wp(z) B2
%jl —FE; = sin fycBs

Determinant d,, = (w(z) + 1 — w?) + % (2w? — w2(z)), with
wi () = w? + wi(x).

2
Apart from the root w = 0, root w — wy, >~ w(%; —1).

h

On (j1,72):

2
(zw —v —|— %’)jl - Wej2 j sin ow?(cBs)
Wej1 + (iw —v)j2 = —ws By

with E1 = —sinfycBs + (iw) 1.
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Resulting system from

{ El =ik [Smoojl + (1 — sin% 0)c B3]
(cBs)' = iko[ B2 — (iw) ™ jo]
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Resulting system from

{ Bl = iko[22% 5y + (1 — sin® ) cBs]
(¢Bs3)' = iko[Ey — (iw) ™" jo]

yields
2 : 2
L Wy : (iw — v)w
EYy = iko[— iwdi) sin g By + (1 — sin” (1 — iod 2Y)eBs)
2
w2(iw — v + 22) sin fpwew?

Bs) = iko[(1+ -~ Wo)By + ————LcBj).
(eB)’ = ihof(1 + 2T L iy, o T g



Original electromagnetic equations

Resulting system from

{ Bl = ko[22 j; + (1 — sin® ) cBs)
(¢Bs3)' = iko[Ey — (iw) ™" jo]

yields
2 : 2
L Wy : (iw — v)w
EYy = iko[— iwdf sin g By + (1 — sin” (1 — iod 2Y)eBs)
2
w2(iw — v + 22) sin fpwew?

B‘ /: k 1 p W E cp 3
(¢B3)" = iko[(1 + iod VB + B

Recall the electric current j:

{ dyj1 = wi[—weEs + (iw — v) sin Gy (cBs)]

w? .
dyj2 = —wf,[(iw — v+ 22)Ey + wesin Oy (cBs3)]



Original electromagnetic equations

Resulting system from

{ Bl = ko[22 j; + (1 — sin® ) cBs)
(¢Bs3)' = iko[Ey — (iw) ™" jo]

yields
2 : 2
L Wy : (iw — v)w
EYy = iko[— iwdf sin g By + (1 — sin” (1 — iod 2Y)eBs)
2
w2(iw — v + 22) sin fpwew?

B‘ /: k 1 p W E cp 3
(¢B3)" = iko[(1 + iod VB + B

Recall the electric current j:

dyj1 = wi[—weEs + (iw — v) sin Gy (cBs)]
2
dyj2 = —wf,[(iw —v+ %)Eg + w, sin fp(cBs)]

No need for an extra differential equation for Eq, thanks to:

Fy = —sinfycBs + (iw) 1.
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Structure

( f’;j”z )/ — koM, (z) ( 6%2 )( 5323 )l — iko My (z) ( 6%2 )

M 0 -1 0 -1
= 2 =
o(%) sin? @ — 1 + o 0 ( sin?fp — e, (x) 0 ) ’

(0 28)

where the coefficients of Mx have a simple pole at w = wy, when
v = 0. and detMx has also a simple pole.
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Turnlng points
Ordinary mode EY = k2(1 — sin? 6y — &)Eg

w2 +Hiwv
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Turning points
2
Ordinary mode EY = k2(1 — sin? 6y — w“;g(gy)Eg
(no additional issue, classical turning point analysis).
Assume that w,(z)? is strictly increasing and that there exists a

unique point xg such that wg(aro) = w? cos? b
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Turning points
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N : A
(no additional issue, classical turning point analysis).
Assume that w,(z)? is strictly increasing and that there exists a
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Original electromagnetic equations

Turning points
Ordinary mode EY = k2(1 — sin? 6y — wp () VEs

N : A
(no additional issue, classical turning point analysis).
Assume that w,(z)? is strictly increasing and that there exists a
unique point xg such that wg(aro) = w? cos? b

Complex phase p, solution of

(JJ2 xX
_(P;/<w))2/)y(ﬂ?) — 1—sin? 0o— p( )

. W
= e(x)—sin® B+ L
w* +wv w

———— Vv
(w? + iwv)
Let , be the unique point (v small) such that

€,(x,) = sin? 6y

Then
pv(z) =1,(x)(x — x,), with r,(z,) # 0.

wlr

ds)

ry(x) =

2 ;ng(:v,,+s(:r—x,,))
(| s

w2 + jwr
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Reduction of the system (discussions with M. Williams)

Equation:
E" -3 = —kj(p,(x))?pu(x) B3

New variable X = p,(z)

X' () (X () 222

= ) = KX ()X (2) By



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Reduction of the system (discussions with M. Williams)

Equation:
E" -3 = —kj(p,(x))?pu(x) B3

New variable X = p,(z)

X' () (X)) = KX (2))P X () B

Introduce w = (X,(CC))%E;),,

(X' () g (X (@) ) = (X' (2) S+ (X ()2 o (X))

Rewrite then
d?w

7= k(X 4k 20(X))w & ——
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Reduction of the system (discussions with M. Williams)

Equation:
E" -3 = —kj(p,(x))?pu(x) B3

New variable X = p,(z)

X' () (X)) = KX (2))P X () B

Introduce w = (X’(.CC))%E;),,

(X' () g (X (@) ) = (X' (2) S+ (X ()2 o (X))
Rewrite then
d*w
e

_ d*w -2
= —kg(X + kg 20(X))w & a7z —(T + ko *h(T))w
Wasov's conjugation lemma for k:a2 small reduces exactly to the
Airy equation.
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Extraordinary mode, normal incidence

Simplification sinfy = 0

0 1
System M%=0 = 20w
* 14 alerial)
Usual ODE:
Bl = —klex(z)Fo,
Observe
ex (@) = - (Wi(x) — w? —iwr)? — wiw?

d,w?
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Extraordinary mode, normal incidence

Simplification sinfy = 0

0 1
60=0
e M= | esh
Usual ODE: ’
Ej = —k:(z]ex(:v)Ez,

Observe ) s -
ex(z) = (W) — w? —iwv)? — ww;

d,w?

No additional issue for points such that ex(xz) =0 for v = 0: it is
still a turning point.



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion Appendix

Points where ex (z) is singular:ex (z) =
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Points where ex (z) is singular:ex (x) = xk_(;i(
d dE k(zx)
) = —kgm(l + (2 — 2x)*g((x — 2x)?)) B2
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Points where ex (z) is singular:ex (x) = mk_(zl
d dE k(zx)
202 = R (14 (@)l — ax)) s

New variable z — zx = 32 (right)

2L
2y dy

1 dEs

(@E) = —kgk(zx)(1+ y°g(y*)) B2

Appendix



Turning point theory for 2-2 systems

T—Tx

Points where ex (z) is singular:ex (z) =

New variable z — zx = y2 (right)

)= (14 (z - 2x)?g((2 — 2x)?) B
x —Tx

1 d. 1dE

2 2 2 2 2
—k2k 1 E

Vo sy ay) = Fok@x) 1+ v g Es

d’E dE

If one removes the addltlonal term, Bessel equation. Solutions

By = C1Yo(2ko(k(zx))2 (z—2x)2)+Cado(2ko(k(zx)) 2 (z—2x)?).



Turning point theory for 2-2 systems

T—Tx

Points where ex (z) is singular:ex (z) =

d dE, k(zy)
() =~k

New variable z — zx = 32 (right)

)= (14 (z — 2x)%9((z — vx)*)) Ea
x —Tx

1 d. 1dE
2 2 2 2 2

—k2k 1 E
Vo sy ay) = Fok@x) 1+ v g Es
d’E dE

If one removes the addltlonal term, Bessel equation. Solutions
~ 1 1
By = ClYo(Qko(k(xX))%(x—xX)5)—l—CgJO(Qko(k(xX))%(:c—a:x)i).

. WIP

E contains In(z — xx) and ¢Bj contains -
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General case
We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,

otherwise change the unknown. General case is:

- (2 49



Outline of the talk Original electromagnetic equations Turning point theory for 2-2 systems Conclusion

General case

We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:

- (2 49

Explicit calculation:

1u1+ UL =

U2 = ko b

Appendix
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General case
We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:
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Explicit calculation:
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General case

We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:

- (2 49

Explicit calculation:

_ 1 ul LW ay vy Teoa( LY a
Uy = ko D + ¢ Ul = ( ko D +b ) —Zkocul+lk0a(iko 5 +bu1).

k2bc+a

b Uui.

(S0 4o %Y =
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General case

We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:

- (2 49

Explicit calculation:

Uy = Zéo “ya Suy = (?714—% 1) = ikocul—kikoa(%%l%—%ul)-
ul / . a 2bC+CL
— ko(— —kj .
(b) +Z O(b) b 3w

With w = b~ 3wy, yields
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General case
We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:
_ ([ —az) bx)
M = (05 0 )
Explicit calculation:

_ 1 ul LW ay vy Teoa( LY a
Uy = ko D + ¢ Ul = ( ko D +b ) —Zkocul+lk0a(iko 5 +bu1).

Ay koY = k32,

p) " b
With w = b~ 3wy, yields

"= k(b +a®) —ikab(3) + (7(3)° = 5
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General case

We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:

- (2 49

Explicit calculation:

_ 1 ul LW ay vy Teoa( LY a
Uy = ko D + ¢ Ul = ( ko D +b ) —Zkocul+lk0a(iko 5 +bu1).

ﬂ, N obc + a?
(b) —|—7,/€0(b) = k b Ui.
With w = b~ 3wy, yields
no__r .2 N [LaY, §b7/2_}b7”
= [~R(eb+a?) — ikob( ) + (3 — 57w

. 1
Similarily, on v = ¢ 2u9
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General case

We look at U’ = ikgM (x)U. First observation: TrMy(x) = 0,
otherwise change the unknown. General case is:

- (2 49

Explicit calculation

1 uf a . . 1 U a
ko D 1+ UL = (?71+5 ) —Zkoculﬁ-lkoa(%?l—{—gul).

Uy =
ﬂ, N ch+a
(b)+lk0(b) = k b Ui.
With w = b~ 3wy, yields
. a 3 10"
"= [~k5(cb+a®) — Zk‘ob(g)/ + (1(3)2 - 53)]“’

Similarily, on v:c_%ug
3 .c 1
,/:—k?2 b 2 ]{7 g/ i Ve .
[~RR(eb -+ a?) + ikoc(2) + (§(5)2 = 5o
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Alternate analysis

_ i 0-0(*1"’ 0) iko(p(x)e—ﬁ)
U_27r/<01(:1;,0)>€ +db.

r 3
U — 1 [ikop’(:c)e( oo(x,0) >+< ao(a:,z; ) ]elko(p(x)ef%)de'

2 01 (.I,
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Alternate analysis

_ i O-O(l‘a 0) iko(p(x)H—ﬁ)
U_27r/<01(:c,0)>€ +db.

" 5
UI QL [lkop/(x)ﬂ( Zogi7 zg )_,_( 0—0(3370) ) ]elko(p(x)ef%)de'
™ 1L,

o1(z,0)

be +a® = (p')%p
Note that det(M%=0 — p/'0Id) = (p'0)* — a® — be.

Appendix
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Alternate analysis

_ i O-O(l‘a 0) iko(p(x)H—ﬁ)
U_27r/<01(a:,0)>€ +db.

P T oo(z,0) 50(2,0) \'| iko(p(x)o—2)
U = 271_/[zkop (:c)G( o1 (2. 0) + o1 (x, 0) le 3/de.
be +a® = (p')%p
Note that det(M%=0 — p/'0Id) = (p'0)* — a® — be.

Determinant vanishes for 2 = p. Eigenvalues A = —p/0 + p’p%
(complex representation).



Turning point theory for 2-2 systems

Alternate analysis

_ i 00('1;’ 0) iko(p(x)H—ﬁ)
U_27r/<01(a:,0)>€ +db.

S T T ao(x,0) 50(2,0) '\ iko(p@)—2)
U = p [ikop' ()0 o1 (2, 0) + o1 (x, 0) le 3/de.
be +a® = (p')%p

Note that det(M%=0 — p/'0Id) = (p'0)* — a® — be.
Determinant vanishes for 2 = p. Eigenvalues A = —p/'f + p’p%
(complex representation).

Method (WIP) Basis of eigenvectors, and express the solution for
the system.
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Some partial conclusions

e A simplified version of the full system
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e Airy function-type analysis for the turning point for the 2-2
system
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e A simplified version of the full system

e Bessel functions for the representation of extraordinary modes.
= we recover the behavior in x_lxx for a part of the solution
(WIP).

e Airy function-type analysis for the turning point for the 2-2
system

= Better than considering the second order ODE (s)? WIP.




Conclusion

Some partial conclusions

e A simplified version of the full system

e Bessel functions for the representation of extraordinary modes.
= we recover the behavior in x_lxx for a part of the solution
(WIP).

e Airy function-type analysis for the turning point for the 2-2
system

= Better than considering the second order ODE (s)? WIP.

e Appearing also in the stability of detonations (Erpenbeck)
(Williams, Zumbrun).
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Appendix

Model studied in BLSS (1)

In the case of a scalar vector potential, we wrote
V(VA) 4+ k3(1 — N(x))A + ivkoA = 0.

The wave number kg was imposed by the scaling on the
adimensional electronic density N(z) € [0, 1].

Equations supplemented by an incident known wave and a
radiation boundary condition.

Classical WKB approximation (as presented also by O. Maj in
October 2012):

A= (CLO + (iko)_lal + ...)eikow

Assumption kg >> 1.

Leading order term in k:g vanishes:

N(z) — 14 |Vyp|? = 1. eikonal equation (Hamilton-Jacobi).
Next order term in k} vanishes:

vag+ 2VagVe + agV.(Vp) = 0: transport equation.

Rewrites as vE + div(EVp) =0, E = |ag|?, vE is the absorbed
laser energy.



Appendix

Model BLSS (I1)

We assume N depending only on z.
The model is supplemented by incident conditions on
Cine = {z =0}
ao(O, v, Z) — etko sin a(cos py+sin pz)
Vap(0,y, z) = (cos a, sin a cos p, sin asin ¢)ag (0, y, 2)
Elementary example: N(z) = x:
Propagation of
singularities:= A(z,y, z) = A(x)ekosinalcospytsingz)
Equation on A:

A" 4 k2(cos®> a — x)A + ivkgA = 0.



Appendix

Model BLSS (I1)

We assume N depending only on z.
The model is supplemented by incident conditions on

Cine = {a: = O}
ao(0,y, z) = etkosina(cos py+sin pz)
VCLO(()’ Y, Z) = (COS a, sin « cos @, sin o sin 90)@0(07 Y, Z)

Elementary example: N(z) = x:

Propagation of

singularities:= A(z,1, z) = A(x)ehosinalcospytsinpz)
Equation on A:

A" 4 k2(cos®> a — x)A + ivkgA = 0.

Writes

A ' 0 1 A
< (ik‘o)_lA/ ) Zlko < COS2OJ—$+% 0 ) < (ik‘o)_lA/ )
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Model of BLSS (III)

Explicit solutions
. % ) iV ) % 2 il/
A = C1Ai(kg (z — cos”a — ]?0)) + CoBi(k§ (v — cos” a — k—o))

where Ai and Bi: pair of fundamental solutions of v” = zu,
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Model of BLSS (III)

Explicit solutions

A= CAi(ky (z — cos®a %)) Y CyBi(ky (z — cos® - %))
where Ai and Bi: pair of fundamental squtlons of u’ = zu, Ai
being the one which Fourier transform is €' T , and B being
another solution, Bi — +o0o at +o0.
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Model of BLSS (III)

Explicit solutions
. 2 ) iV ) 2 2 il/
A = C1Ai(k§ (x — cos” o — k—)) + CoBi(k§ (v — cos” a — k—))
0 0
where Ai and Bi: pair of fundamental squtlons of u’ = zu, Ai

being the one which Fourier transform is €' T , and B being
another solution, Bi — +o0o at +o0.
Behavior at |z| — oo, |arg(z)| < 2

. _1 2,8 . _1 2,
Ai(z) ~ Kz 1e 3% | Bi(z) ~ Kz 1e3
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Model of BLSS (III)

Explicit solutions

2 w 2 1w
A= C1Ai(kf (x — cos* a — ]?)) + CoBi(k§ (x — cos* a — ]?))
0 0

where Ai and Bi: pair of fundamental solutlons of u’ = zu, Ai

being the one which Fourier transform is €' T , and B being
another solution, Bi — +o0o at +o0.
Behavior at |z| — oo, |arg(z)| < 2

3

e—3%2 , Bi(z) ~ Kz ies?

Bl

Ai(z) ~ Kz~

3 oL "
For z — cos? o > f— one has %%zi — 400, radiation condition
imply Cy = 0.
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Model of BLSS (III)

Explicit solutions

2 w 2 w
A= C1Ai(kf (x — cos* a — k—)) + CoBi(k§ (x — cos* a — k—))
0 0

where Ai and Bi: pair of fundamental solutlons of u’ = zu, Ai

being the one which Fourier transform is €' T , and B being
another solution, Bi — +o0o at +o0.
Behavior at |z| — oo, |arg(z)| < 2

3
e 32 * Bi(z) ~ Kz ie3”

Bl

Ai(z) ~ Kz~

For z — cos? o > \f% one has %%z% — 400, radiation condition
imply Cy = 0.
2 ; o .
Az, y, z) = CoAi(k§ (z — cos® o — ;?V))em() sin a(cos py+sin pz)
0
It is the 'ordinary mode’ as described in Chen-White (eq (16),

(17)).
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Model of BLSS (IV): condition outside the plasma

For z =0, , )
A(0,y,2) = CoAi(—k$ cos? v — iuko_g)eiko sin o(cos py+sin pz)
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Model of BLSS (IV): condition outside the plasma
For x = 0, , )
A(0,y, z) = CoAi(—k§ cos* a — iuko_g)eiko sin o(cos py+sin pz)

For 2 <0, C" 4 k2 cos? aC' = 0 (no absorption in the vacuum).
Choice of C(z) = etk 5% 35 solution. No exact match but
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Model of BLSS (IV): condition outside the plasma
For x = 0, , )
A(0,y, z) = CoAi(—k§ cos* a — iuko_g)eiko sin o(cos py+sin pz)

For 2 <0, C" 4 k2 cos? aC' = 0 (no absorption in the vacuum).
Choice of C(z) = etk 5% 35 solution. No exact match but

Jun

Ai(~Z) ~ 72273 (sin(222 + T) + O(Z72)) =
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Model of BLSS (IV): condition outside the plasma
For x = 0, , )
A(0,y, z) = CoAi(—k§ cos* a — iuko_g)eiko sin o(cos py+sin pz)

For 2 <0, C" 4 k2 cos? aC' = 0 (no absorption in the vacuum).
Choice of C(z) = etk 5% 35 solution. No exact match but

Ai(~Z) ~ 73271 (sin(227 + ) + O(Z272)) =

i ; iv 3
A(0,y,2) ~ Lr ik, —im 4i2 (cos? k1) F o
s 2

, 13
67—13(0052 a—O—%) 2 ko + m)ez’ko sin cv(cos py—+sin goz)_

NI

(cos2oz+,i—’(’))_%(e +
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Model of BLSS (IV): condition outside the plasma
For x = 0, , )
A(0,y, z) = CoAi(—k§ cos* a — iuko_g)e““o sin o(cos py+sin pz)

For 2 <0, C" 4 k2 cos? aC' = 0 (no absorption in the vacuum).
Choice of C(z) = etk 5% 35 solution. No exact match but

Ai(~Z) ~ 72273 (sin(222 + T) + O(Z72)) =
2 (cos? a+;—g)%ko

1 , _in
A0,y,2) ~ @w_%ko §(cos? a + %)_%(e CaE

s

f—13(COS atZ ) k0+ )eikosina(cosapy+sin<pz)

_l’_

e 4
If one wants to have the incoming wave:

Co _1

1 T 2002 vy S
—-1.-% W 1 0T 4i2(e082 o W5
— 2k‘06(cos a+-—) e 14 5 *o) 0 —1.

2 ko
. 3
1L ko sina(cos +sin pz— 2 (cos? o+ )2 )i T
A(:U,y,Z) :277'2]{?06 0 ( kY ® 3( kO) ) 1
2 1
k3 2 2 vy
x Ai(kg (x — cos? ) — vk, *)(cos? a + Z)5
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

d

75 (@0(Y(s)) = —ao(Y () Ap(Y(5)) — vao(Y(s))
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

d%(ao(Y(S)) = —ao(Y(s))Ap(Y(s)) — vao(Y(s))
and
(P(s))?+N(Y(s))—1=0= 2P(s)P'(s)+ VN(Y(s)).Y'(s) = 0.
Natural choice P/(s) = 4V(1 — N)(Y(s)).
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

d%(ao(Y(S)) = —ao(Y(s)Ap(Y(s)) = vao(Y(s))

and

(P(s))?+N(Y(5)—1=0=2P(s)P'(s) + VN(Y(s)).Y'(s) = 0.
Natural choice P/(s) = 4V(1 — N)(Y(s)).

General case: operator with variable coeffs p(z, D), Dy = -2
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

d%(ao(Y(S)) = —ao(Y(5))Ap(Y(s)) — vao(Y (s))
and
(P(s))?+N(Y(5)—1=0=2P(s)P'(s) + VN(Y(s)).Y'(s) = 0.
Natural choice P/(s) = 4V(1 — N)(Y(s)).
General case: operator with variable coeffs p(x, D), D, =
p(x, Dy)(Ae™™o?) = p(z, V)ag(z) + O(ky ).

L
iko

Sle
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

d%(ao(Y(S)) = —ao(Y(5))Ap(Y(s)) — vao(Y (s))
and

(P(s))?+N(Y(5)—1=0=2P(s)P'(s) + VN(Y(s)).Y'(s) = 0.
Natural choice P/(s) = 4V(1 — N)(Y(s)).

General case: operator with variable coeffs p(x, D), D, =

p(x, Dy)(Ae™0%) = p(z, Vip)ao(x) + Olkg *)-

L
iko

Sle

System of rays (bicharacteristics):
= Vep(X(s), P(s)), 95 = —Van(X(s), P(s)).
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Model of BLSS (V): general function N
Interpretation: ray tracing Y (s) s. t. Y/(s) = V(Y (s)) = P(s).

%(ao(Y(S)) = —ao(Y(5))Ap(Y(s)) — vao(Y (s))
and

(P(s))24+N(Y(5))—1=0=2P(s)P'(s) + VN(Y(5)).Y'(s) =
Natural choice P/(s) = 4V(1 — N)(Y(s)).

General case: operator with variable coeffs p(z, D,), D, = -

Pl D) (Ac0?) = plz, Vip)ao(x) + Ol ). -

Sle

System of rays (bicharacteristics):
WX — Vep(X(s), P(s)), 2 = ~V,p(X(s), P(s)).

Property (flavor of a theorem): The high frequency singularities of
a solution of Pu = 0 belong to integral curves of the previous
system.



	Original electromagnetic equations
	Turning point theory for 2-2 systems
	Conclusion
	Appendix

