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High frequency waves

Cauchy problem for scalar wave equation

utt − c(x)2∆u = 0, (t ,x) ∈ R+ × Rn,

u(0,x) = A(x)eiφ(x)/ε, ut (0,x) =
1
ε

B(x)eiφ(x)/ε,

where c(x) (variable) smooth speed of propagation.

High frequency→
short wave length→
highly oscillatory solutions→
many gridpoints.
Direct numerical solution resolves wavelength:
#gridpoints ∼ ε−n at least⇒ cost ∼ ε−n−1 at least
Often unrealistic approach for applications in e.g. optics,
electromagnetics, geophysics, acoustics, quantum mechanics, . . .
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High frequency material

Cauchy problem for scalar wave equation

utt −∇ · cε(x)∇u = 0, (t ,x) ∈ R+ × Rn,

u(0,x) = A(x), ut (0,x) = B(x),

where cε(x) ∈ Rd×d has variations on length scale ∼ ε.
The functions A(x) and B(x) are smooth (and independent of ε).

Direct numerical solution resolves wavelength:
#gridpoints ∼ ε−n at least⇒ cost ∼ ε−n−1 at least
Prohibitively expensive when ε� 1, particularly in higher
dimensions.
Our approach: Heterogeneous Multiscale Method (HMM)
[E,Engquist,2001].
Solve small micro problems (localized in time and space) to probe
effective dynamics, which is approximated on coarse grid
(∆x � ε). Method cost (essentially) independent of ε.
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Geometrical optics

Wave equation

utt − c(x)2∆u = 0.

Write solution on the form

u(t , x) = a(t , x , ε)eiφ(t ,x)/ε.

(a) Amplitude a(x) (b) Phase φ(x)
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Geometrical optics

a, φ vary on a much coarser scale than u.
(And varies little with ε.) Geometrical optics approximation
considers a and φ as ε→ 0.

Phase and amplitude satisfy eikonal and transport equations

φ2
t − c(y)2|∇φ|2 = 0, at + c

∇φ · ∇a
|∇φ|

+
c2∆φ− φtt

2c|∇φ|
a = 0.

Ray tracing: x(t),p(t) bicharacteristics of the eikonal equation,

dx
dt

= c(x)2p,
dp
dt

= −∇c(x)

c(x)
, φ(t ,x(t)) = φ(0,x(0)).

Good accuracy for small ε. Computational cost ε-independent.

u(t , x) = a(t , x)eiφ(t ,x)/ε + O(ε).

(#DOF and cost independent of ε)
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Geometrical optics

The ansatz
u(t , x) = a(t , x)eiφ(t ,x)/ε,

generally breaks down in finite time if valid at t = 0.

Refraction of waves gives rise to multiple crossing waves

u(t , x) =
N∑

n=1

an(t , x)eiφn(t ,x)/ε

⇒ Several amplitude and phase functions.
Caustics appear at points of transition = concentration of rays.
Geometrical optics predicts infinite amplitude at caustics.
Handling multiphase solutions tricky for numerical methods with
fixed grids.
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Caustics

Concentration of rays.

GO amplitude a(t , y)→∞ but should be a(t , y) ∼ ε−α, 0 < α < 1.
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Gaussian beams

Approximate, localized, solutions to the wave
equation/Schrodinger with a Gaussian profile (width ∼

√
ε).

Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes,
Kravtsov, . . . ], Quantum Mechanics,[Heller, Hagedorn, Herman, Kluk,
Kay, . . . ], Plasma Physics, [Pereverzev, Peeters, Maj, . . . ],
Mathematics [Ralston, Hörmander, . . . ]
No breakdown at caustics.
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Gaussian beams

Gaussian beams are of the same form as geometrical optics
solutions,

v(t , y) = A(t , y)eiΦ(t ,y)/ε,

centered around a geometrical optics ray x(t),

A(t , y) = a(t , y − x(t)), Φ(t , y) = φ(t , y − x(t)).

The phase Φ will now have a positive imaginary part away from
the ray x(t).
Imaginary part of φ ∼ |y |2 ⇒ |v(t , y)| ∼ e−|y−x(t)|2/ε,

Gaussian with width
√
ε

Localized around x(t). (Moves along the space time ray.)

Phase Φ(t , y) and amplitude A(t , y) approximated by polynomials
locally around x(t)
Φ(t , y) and A(t , y) solve eikonal and transport equation only upto
O(|y − x |m).
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First order beams

The simplest ("first order") Gaussian beams are of the form

v(t , y) = a0(t)eiΦ(t ,y)/ε, Φ(t , y) = φ(t , y − x(t)),

where
φ(t , y) = φ0(t) + y · p(t) +

1
2

y ·M(t)y .

i.e. A(t , y) approximated to 0th order, and Φ(t , y) to 2nd order.

⇒

We require that Φ(t , y) solves eikonal to order O(|y − x |3) and A(t , y)
solves transport equation to order O(|y − x |).
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First order beams
Let us thus require that

Φ2
t − c(y)2|∇Φ|2 = O(|y − x(t)|3),

At + c
∇Φ · ∇A
|∇Φ|

+
c2∆Φ− Φtt

2c|∇Φ|
A = O(|y − x(t)|),

⇒We obtain ODEs for φ0, x , p, M, a0.

ẋ(t) = c(x)2p , φ̇0(t) = 0 ,

ṗ(t) = −∇c(x)/c(x) , Ṁ(t) = −D −MB − BTM −MCM ,

ȧ0(t) =
a0

2

(
−c(x)p · ∇c(x)− c(x)3p ·Mp + c(x)2Tr[M]

)
,

⇒ Asymptotic order of accuracy is

vtt − c(y)2∆v = O
(

1√
ε

)
.
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ẋ(t) = c(x)2p , φ̇0(t) = 0 ,
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Higher order beams

More generally, we can construct higher order beams. Let

v(t , y) = a(t , y − x(t))eiφ(t ,y−x(t))/ε,

where, for order K beams,

The phase is a Taylor polynomial of order K + 1,

φ(t , y) = φ0(t) + y · p(t) + y · 1
2

M(t)y +
K +1∑
|β|=3

1
β!
φβ(t)yβ .

A is now a finite WKB expansion,

a(t , y) =

dK/2e−1∑
j=0

εjaj (t , y)

Each amplitude term aj is a Taylor polynomial to order K − 2j − 1

aj (t , y) =

K−2j−1∑
|β|=0

1
β!

aj,β(t)yβ
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Higher order beams

We now require that
Φ(t , y) = φ(t , y − x)) solves eikonal equation to order |y − x |K +2

aj(t , y − x) solve higher order transport equations to order
|y − x |K−2j

Again, this gives ODEs for all Taylor coefficients,

ẋ(t) = c(x)2p , φ̇0(t) = 0 ,

ṗ(t) = −∇c(x)/c(x) , Ṁ(t) = −D −MB − BTM −MCM ,

ȧj,β(t) = . . . , φ̇β(t) = . . . ,

Asymptotic order of accuracy is

vtt − c(y)2∆v = O
(
εK/2−1

)
.
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Gaussian beams
Properties

v(t , y) = a0(t)eiφ(t ,y−x(t))/ε, φ(t , y) = φ0(t) + y · p(t) +
1
2

y ·M(t)y

Φ(t , x(t)) = φ(t ,0) = φ0(t) is real valued
If M(0) is symmetric and =M(0) is positive definite then this is true
for M(t) (which exists) for all t > 0.
a0(t) exists everywhere (no blow-up at caustics)
Shape of beam remains Gaussian
For high order need cutoff in a neighborhood of central ray to
avoid spurious growth.

v(t , y) = a(t , y − x(t))eiφ(t ,y−x(t))/ε%(y − x(t))
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Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams.
Let v(t , y ; z) be a beam starting from the point y = z and define

uGB(t , y) = ε−
n
2

∫
K0

v(t , y ; z)dz

uGB(t , y) = ε−
n
2

∫
K0

a0(t ; z)e
i
ε

[φ0(t ;z)+(y−x(t ;z))·p(t ;z)+ 1
2 (y−x(t ;z)·M(t ;z)(y−x(t ;z))]

(n – dimension, K0 – compact set)

By linearity of the wave equation equation a sum of solutions is
also a solution.
uGB(t , y) is an asymptotic solution with initial data uGB(0, y).
Sufficient to describe e.g. WKB data: ∃ K -th order beams s.t.∥∥∥A(y)eiφ(y)/ε − uGB(0, ·)

∥∥∥
E

= O(εK/2),

[Tanushev, 2007].
Prefactor normalizes beams appropriately, ||uGB||E = O(1).
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Superpositions of Gaussian beams

More general phase space superposition:

Let v(t , y ; z,p) be a beam starting from the point y = z with
momentum p and define

uGB(t , y) = ε−n
∫

K̃0

v(t , y ; z,p)dzdp.

uGB(t , y) is an asymptotic solution with initial data

uGB(0, y) = ε−n
∫

K̃0

v(0, y ; z,p)dzdp.

Can describe more general data. (C.f. FBI transform.)
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Numerical methods

Approximate superposition integral by sum (trapezoidal rule)

uGB(t , y) = ε−
n
2

∫
K0

v(t , y ; z)dz ≈ ε−
n
2
∑

j

v(t , y ; zj)∆zn.

Lagrangian methods – Solve ODEs ∀zj with standard methods.
Similar to ray tracing but with all the additional Taylor coefficients
computed along the rays
(M, aj,β, φβ, . . . ) [Hill, Klimes, . . . ]
Eulerian methods – obtain parameters from solving PDEs on fixed
grids [Leung, Qian, Burridge,07]], [Jin, Wu, Yang,08], [Jin, Wu,
Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10],. . .
Wavefront methods – solve for parameters on a wave front
[Motamed, OR,09]
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Numerical methods

uGB(t , y) = ε−
n
2

∫
K0

v(t , y ; z)dz ≈ ε−
n
2
∑

j

v(t , y ; zj)∆zn.

Numerical issues
Cost ∼ number of beams since each beam is O(1).
For accuracy need ∆z ∼

√
ε ∼ width of beams.

⇒ cost ∼ O(ε−n/2)
C.f. direct solution of wave equations, at least O(ε−(n+1))

For phase space superposition would get ∼ O(ε−n) but can often
be improved (e.g. support in p ∼

√
ε for WKB data)

Spreading of beams
Wide beams⇒ large Taylor approximation errors
Initial data approximation
Many degrees of freedom. Can have huge impact on accuracy at
later times.
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Approximation errors

Let
� := ∂tt + c(y)2∆.

Suppose u is exact solution of wave equation and ũ is the Gaussian
beam approximation

�u = 0, �ũ = O(εK/2−1).

What is the norm error in ũ, i.e. ||u − ũ||?

Use ε-scaled energy norm

||u||2E :=
ε2

2

∫
Rn
|ut |2c(y)−2 + |∇u|2dy .

This is O(1) for WKB type initial data,

u(0, x) = A(x)eiφ(x)/ε ⇒ ||u(0, ·)||E = O(1).
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Approximation errors

Use well-posedness (stability) estimate for wave equation solutions w :

‖w(t , ·)‖E ≤ ‖w(0, ·)‖E + εC(T ) sup
t∈[0,T ]

‖�w(t , ·)‖L2 , 0 ≤ t ≤ T .

Since, �u = 0 and by linearity

�[ũ − u] = �ũ.

Hence, assuming u(0, x) = ũ(0, x),

||ũ(t , ·)− u(t , ·)||E ≤ εC(T ) sup
t∈[0,T ]

||�ũ(t , ·)||L2 , 0 ≤ t ≤ T .

Error in ũ ∼ how well it satisfies equation, plus one order in ε
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Hence, assuming u(0, x) = ũ(0, x),

||ũ(t , ·)− u(t , ·)||E ≤ εC(T ) sup
t∈[0,T ]

||�ũ(t , ·)||L2 , 0 ≤ t ≤ T .

Error in ũ ∼ how well it satisfies equation, plus one order in ε
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Approximation Errors Single Gaussian Beam

By earlier construction

�ũGB(t , x) = O(εK/2−1).

and

||ũ(t , ·)− u(t , ·)||E ≤ εC(T ) sup
t∈[0,T ]

||�ũ(t , ·)||L2 , 0 ≤ t ≤ T .

Hence, after appropriate normalization (so ||ũ||E = 1) and assuming
zero initial data error, [Ralston, 82]

sup
t∈[0,T ]

||ũ(t , ·)− u(t , ·)||E ≤ O(εK/2).

Estimate is sharp.
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Approximation Errors Superpositions

Norm estimates of ||u − uGB|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,. . . ]

Need to check how well uGB satisfies equation

�uGB := ∂ttuGB + c(y)2∆uGB, uGB(t , y) = ε−
n
2

∫
K0

v(t , y ; z)dz.

By linearity and simple estimate,

|�uGB| ≤ ε−n/2
∫

K0

|�v(t , y ; z)|dz.

After scaling and Cauchy–Schwarz,

||�uGB(y)||22 ≤ Cε−n
∫

K0

||�v(t , y ; z)||22dz ≤ Cε−nεK−2+n/2.

Gives error estimate for uGB

||u − uGB||E ≤ εC||�uGB||2 ≤ CεK/2−n/4.
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Approximation errors superpositions

Basic estimate

||u(t , ·)− uGB(t , ·)||E ≤ O(εK/2−n/4) .

is not sharp. E.g. it does not predict convergence for first order
beams in 2D.

Problem: The step

|�uGB| ≤ ε−n/2
∫

K0

|�v(t , y ; z)|dz

ignores cancellations between neighbouring beams. Very bad
except at caustics where beams interfere constructively.
Gives a dependence on dimension n in estimate.
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

||u(t , ·)− uGB(t , ·)||E ≤ O(εK/2) .

For the Schrödinger equation,

||u(t , ·)− uGB(t , ·)||L2 ≤ O(εK/2) .

Superposition in physical space. Initial data approximated on a
submanifold of phase space (WKB data).
Convergence of all beams independent of dimension and
presence of caustics.
Result also for general scalar, strictly hyperbolic m-th order PDEs.
Cf. [Bougacha, Akian, Alexandre, 2009], [Rousse, Swart, 2009]
and [Lu, Yang, 2011] for other settings.
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Gaussian beams for Helmholtz

For time-harmonic waves consider Helmholtz equation

∆u + (iαε−1 + ε−2)n2u = g, x ∈ Rd .

where n(x) = 1/c(x), α=damping and g supported on a co-dimension
one manifold. (Ex. g = g0(x2)δ(x1)/ε.)

"Blobs"⇒ "Fat rays" localized around geometrical optics ray

To leading order gaussian transversely to ray
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Gaussian beams for Helmholtz

Same ansatz,

v = a(s, y − x(s))eiφ(s,y−x(s))/ε,

centered around a geometrical optics ray x(s) but s not time.

First order beams are of the form

φ = φ0(s) + y · p(s) +
1
2

y ·M(s)y , a = a0(s),

i.e. a approximated to 0th order, and φ to 2nd order.
Similar ODEs for a0, x ,p,M, φ0 as in the time-dependent case.
Similar properties as in time-dependent case:

Phase φ evaluated on ray = φ0(s) is real valued
If M(0) is symmetric and =M(0) is positive definite then this is true
for M(s) (which exists) for all s > 0.
a0(s) exists everywhere (no blow-up at caustics)
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Gaussian beams for Helmholtz
Extension off ray

v(y) =

a(s, y − x(s))eiφ(s,y−x(s))/ε, x(s)

x(s*)

y
v(y)

η

How to evaluate "(s, y − x(s))" in expression for beam?

No distinguished "time" variable⇒ Extend beam by Taylor
expansion transversely to ray:

Let s∗ = s∗(y) such that x(s∗) is closest point on ray to y .
Only well-defined close enough to ray⇒ Cutoff %(y) needed also
for first order beams (size η)
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Gaussian beams for Helmholtz
Source

Helmholtz with source on Σ = {y : ρ(y) = 0}.

Lu =:

∆u + (iαε−1 + ε−2)n2u =
1
ε

g(y)δ(ρ(y)).

Σ

x(s)

x0

ρ > 0
ρ < 0

u+(x)

u−(x)

η

Beams shoot out orthogonally in each direction from Σ
Gives beams v±(y), with v+(y) = 0 when ρ(y) < 0 etc.
Note that v+ = v− on Σ, but ∇φ+ = −∇φ− so that
L(v+ + v−) ∼ δ(ρ(y))+ smooth part.
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Gaussian beams for Helmholtz
Superposition

Lu =: ∆u + (iαε−1 + ε−2)n2u

=
1
ε

g(y)δ(ρ(y)).

Σ

x(s)

x0

ρ > 0
ρ < 0

u+(x)

u−(x)

η

Let v±(y ; z) be the beams starting from z ∈ Σ and define
superposition

uGB(y) = ε−
n−1

2

∫
Σ

[v+(y ; z) + v−(y ; z)]dAz (1)

Choose initial data for beam v±(z; z) such that

LuGB(y) ∼ 1
ε

g̃(y)δ(ρ(y)) + fGB

with g̃ ≈ g.
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Error estimate
K th order beams, Helmholtz case

Theorem (Liu, Ralston, Tanushev, O.R., 2013)
Assume

Smooth, compactly supported source g(x)

Index of refraction n(x) smooth and constant for |x | > R

No trapped rays: ∃L s.t. |x(±L)| > 2R if |x(0)| < R, |p(0)| = n(x(0))

No initial data error g̃ = g.

Then with C independent of ε and α,

||u − uGB||L2(|x|<R) ≤ CεK/2,

Superposition in physical space.
Convergence of all beams independent of dimension and
presence of caustics.
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Sketch of proof, wave equation

Use energy estimate

‖uGB(t , ·)− u(t , ·)‖E ≤ ‖uGB(0, ·)− u(0, ·)‖E + Cε sup
t∈[0,T ]

‖�uGB(t , ·)‖L2 ,

The residual is of the form

�uGB(t , y) = εK/2−q
J∑

j=1

εrjT εj [fj ](t , y) +O(ε∞) ,

where rj ≥ 0, J finite and fj ∈ L2 (all independent of ε).
T εj : L2 → L2 belongs to a class of oscillatory integral operators.

Together we get (if initial data exact)

‖uGB(t , ·)− u(t , ·)‖E ≤ C(T )εK/2
J∑

j=1

εrj‖T εj ‖L2 ||fj ||L2 +O(ε∞)
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Sketch of proof, cont.

We have

‖uGB(t , ·)− u(t , ·)‖E ≤ C(T )εK/2
J∑

j=1

‖T εj ‖L2 +O(ε∞)

where, in its simplest form,

T ε[w ](t , y) := ε−
n+|α|

2

∫
K0

w(z)(y − x(t ; z))αeiφ(t ,y−x(t ;z);z)/εdz,

for some multi-index α, Gaussian beam phase φ and geometrical
optics rays x(t ; z) with x(0; z) = z.

Result follows if we prove that T ε is bounded in L2 independent of ε,

||T ε||L2 ≤ C.

This is the key estimate of our proof.
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Sketch of proof, cont.

Estimate of ||T ε||L2 , where

T ε[w ](t , y) := ε−
n+|α|

2

∫
K0

w(z)(y − x(t ; z))αeiφ(t ,y−x(t ;z);z)/εdz.

Main difficulty: no globally invertible map x(0; z) = z → x(t ; z)
because of caustics.

Mapping (x(0; z),p(0; z))→ (x(t ; z),p(t ; z) is however globally
invertible and smooth. Gives the "non-squeezing" property,

c1|z − z ′| ≤ |p(t ; z)− p(t ; z ′)|+ |x(t ; z)− x(t ; z ′)| ≤ c2|z − z ′| .

Allows us to use stationary phase arguments close to caustics,
and carefully control cancellations of oscillations there (similar to
[Swart,Rousse], [Bougacha, Akian, Alexandre]).
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Approximation errors
Remarks

The estimate
||u(t , ·)− uGB(t , ·)||E ≤ O(εK/2)

is sharp for individual beams (relative error). But for superpositions?

Predicts convergence rate of first order beam to be only O(
√
ε).

These beams are based on same high frequency approximation
as geometrical optics which has O(ε) accuracy.
Numerical experiments suggests a better rate for odd order beams
For the Helmholtz case we have proved [Motamed, OR] that

|u(x)− uGB(x)| ≤ O(εdK/2e)

for the Taylor expansion part of the error away from caustics. This
gives O(ε) for first order beams.
More error cancellations coming in for odd order beams?
(⇒ no gain in using even order beams)
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Numerical examples
Cusp caustic

Consider the test case
where

Φ(0, y) = −y1 + y2
2 ,

A(0, y) = e−10|y |2 .

Cusp caustic at
t = 0.5
Two fold caustics at
t > 0.5
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Numerical examples
Cusp caustic, convergence

Energy norm
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Cusp caustic, convergence
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