Gaussian Beam Approximations of High Frequency Waves

Olof Runborg

Department of Mathematics, KTH

Joint with
Hailiang Liu, Iowa,
James Ralston, UCLA,
Nick Tanushev, Z-Terra Corp.

ESF Exploratory Workshop
IPP Garching, October 2013
High frequency waves

Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)/\varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)/\varepsilon}, \]

where \(c(x) \) (variable) smooth speed of propagation.
High frequency waves

Cauchy problem for scalar wave equation

$$u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n,$$

$$u(0, x) = A(x)e^{i\phi(x)/\varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)/\varepsilon},$$

where $c(x)$ (variable) smooth speed of propagation.

- **High frequency** →
 - short wave length →
 - highly oscillatory solutions →
 - many gridpoints.

High frequency waves

Direct numerical solution resolves wavelength:

$$\# \text{gridpoints} \sim \varepsilon^{-n} \text{ at least}$$

$$\Rightarrow \text{cost} \sim \varepsilon^{-n-1} \text{ at least}$$

Often unrealistic approach for applications in e.g. optics, electromagnetics, geophysics, acoustics, quantum mechanics, ...
High frequency waves

Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)/\varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)/\varepsilon}, \]

where \(c(x) \) (variable) smooth speed of propagation.

- High frequency \(\rightarrow \) short wave length \(\rightarrow \) highly oscillatory solutions \(\rightarrow \) many gridpoints.
- Direct numerical solution resolves wavelength:
 \#gridpoints \(\sim \varepsilon^{-n} \) at least \(\Rightarrow \) cost \(\sim \varepsilon^{-n-1} \) at least
High frequency waves

Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)/\varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)/\varepsilon}, \]

where \(c(x) \) (variable) smooth speed of propagation.

- High frequency \(\rightarrow \) short wave length \(\rightarrow \) highly oscillatory solutions \(\rightarrow \) many gridpoints.

- Direct numerical solution resolves wavelength:
 \#gridpoints \(\sim \varepsilon^{-n} \) at least \(\Rightarrow \) cost \(\sim \varepsilon^{-n-1} \) at least

- Often unrealistic approach for applications in e.g. optics, electromagnetics, geophysics, acoustics, quantum mechanics, \ldots
Cauchy problem for scalar wave equation

\[u_{tt} - \nabla \cdot c^\varepsilon(x) \nabla u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x), \quad u_t(0, x) = B(x), \]

where \(c^\varepsilon(x) \in \mathbb{R}^{d\times d} \) has variations on length scale \(\sim \varepsilon \).

The functions \(A(x) \) and \(B(x) \) are smooth (and independent of \(\varepsilon \)).
High frequency material

Cauchy problem for scalar wave equation

\[u_{tt} - \nabla \cdot c^\varepsilon(x) \nabla u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x), \quad u_t(0, x) = B(x), \]

where \(c^\varepsilon(x) \in \mathbb{R}^{d \times d} \) has variations on length scale \(\sim \varepsilon \).

The functions \(A(x) \) and \(B(x) \) are smooth (and independent of \(\varepsilon \)).

- Direct numerical solution resolves wavelength:
 \#gridpoints \(\sim \varepsilon^{-n} \) at least \(\Rightarrow \) cost \(\sim \varepsilon^{-n-1} \) at least

 Prohibitively expensive when \(\varepsilon \ll 1 \), particularly in higher dimensions.

Our approach: Heterogeneous Multiscale Method (HMM) [E, Engquist, 2001]. Solve small micro problems (localized in time and space) to probe effective dynamics, which is approximated on coarse grid \((\Delta x \gg \varepsilon) \). Method cost (essentially) independent of \(\varepsilon \).
High frequency material

Cauchy problem for scalar wave equation

\[u_{tt} - \nabla \cdot c^\varepsilon(x) \nabla u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x), \quad u_t(0, x) = B(x), \]

where \(c^\varepsilon(x) \in \mathbb{R}^{d \times d} \) has variations on length scale \(\sim \varepsilon \).

The functions \(A(x) \) and \(B(x) \) are smooth (and independent of \(\varepsilon \)).

- Direct numerical solution resolves wavelength:
 \[\# \text{gridpoints} \sim \varepsilon^{-n} \text{ at least} \Rightarrow \text{cost} \sim \varepsilon^{-n-1} \text{ at least} \]
 Prohibitively expensive when \(\varepsilon \ll 1 \), particularly in higher dimensions.

- Our approach: Heterogeneous Multiscale Method (HMM)
 \[[E, Engquist, 2001]. \]
High frequency material

Cauchy problem for scalar wave equation

\[u_{tt} - \nabla \cdot c^\varepsilon(x) \nabla u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x), \quad u_t(0, x) = B(x), \]

where \(c^\varepsilon(x) \in \mathbb{R}^{d \times d} \) has variations on length scale \(\sim \varepsilon \).

The functions \(A(x) \) and \(B(x) \) are smooth (and independent of \(\varepsilon \)).

- Direct numerical solution resolves wavelength:
 \#gridpoints \(\sim \varepsilon^{-n} \) at least \(\Rightarrow \) cost \(\sim \varepsilon^{-n-1} \) at least

 Prohibitively expensive when \(\varepsilon \ll 1 \), particularly in higher dimensions.

- Our approach: Heterogeneous Multiscale Method (HMM)
 [E, Engquist, 2001].

- Solve small micro problems (localized in time and space) to probe effective dynamics, which is approximated on coarse grid
 \((\Delta x \gg \varepsilon) \). Method cost (essentially) independent of \(\varepsilon \).
Geometrical optics

Wave equation

\[u_{tt} - c(x)^2 \Delta u = 0. \]

Write solution on the form

\[u(t, x) = a(t, x, \varepsilon)e^{i\phi(t, x)/\varepsilon}. \]
Wave equation

$$u_{tt} - c(x)^2 \Delta u = 0.$$

Write solution on the form

$$u(t, x) = a(t, x, \varepsilon)e^{i\phi(t,x)}/\varepsilon.$$

(a) Amplitude $a(x)$

(b) Phase $\phi(x)$
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0
\]
\[
\frac{\partial \phi}{\partial x} \frac{\partial a}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial a}{\partial y} + \frac{\partial \phi}{\partial x} \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial \phi}{\partial x} = 0
\]
a, φ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and φ as ε → 0.

Phase and amplitude satisfy eikonal and transport equations

\[\phi_t^2 - c(y)^2|\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{|2c|\nabla \phi|} a = 0. \]
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.

- Phase and amplitude satisfy eikonal and transport equations

\[
\phi_t^2 - c(y)^2 |\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
\]

- Ray tracing: $x(t), p(t)$ bicharacteristics of the eikonal equation,

\[
\frac{dx}{dt} = c(x)^2 p, \quad \frac{dp}{dt} = -\frac{\nabla c(x)}{c(x)}, \quad \phi(t, x(t)) = \phi(0, x(0)).
\]
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.

- Phase and amplitude satisfy eikonal and transport equations

\[
\phi_t^2 - c(y)^2|\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
\]

- Ray tracing: $x(t), p(t)$ bicharacteristics of the eikonal equation,

\[
\frac{dx}{dt} = c(x)^2 p, \quad \frac{dp}{dt} = -\frac{\nabla c(x)}{c(x)}, \quad \phi(t, x(t)) = \phi(0, x(0)).
\]

- Good accuracy for small ε. Computational cost ε-independent.

\[
u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon).
\]

(#DOF and cost independent of ε)
The ansatz

\[u(t, x) = a(t, x)e^{i\phi(t,x)/\varepsilon}, \]

generally breaks down in finite time if valid at \(t = 0 \).
Geometrical optics

- The ansatz
 \[u(t, x) = a(t, x)e^{i\phi(t, x)}/\varepsilon, \]
 generally breaks down in finite time if valid at \(t = 0 \).
- Refraction of waves gives rise to multiple crossing waves
 \[u(t, x) = \sum_{n=1}^{N} a_n(t, x)e^{i\phi_n(t, x)}/\varepsilon \]
 \(\Rightarrow \) Several amplitude and phase functions.
The ansatz

\[u(t, x) = a(t, x) e^{i \phi(t,x)/\varepsilon}, \]

generally breaks down in finite time if valid at \(t = 0 \).

Refraction of waves gives rise to multiple crossing waves

\[u(t, x) = \sum_{n=1}^{N} a_n(t, x) e^{i \phi_n(t,x)/\varepsilon} \]

\(\Rightarrow \) Several amplitude and phase functions.

Caustics appear at points of transition = concentration of rays.
The ansatz

\[u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon}, \]

generally breaks down in finite time if valid at \(t = 0 \).

Refraction of waves gives rise to multiple crossing waves

\[u(t, x) = \sum_{n=1}^{N} a_n(t, x)e^{i\phi_n(t, x)/\varepsilon} \]

\[\Rightarrow \] Several amplitude and phase functions.

Caustics appear at points of transition = concentration of rays.

Geometrical optics predicts infinite amplitude at caustics.
Geometrical optics

- The ansatz

 \[u(t, x) = a(t, x)e^{i\phi(t,x)/\varepsilon}, \]

 generally breaks down in finite time if valid at \(t = 0 \).

- Refraction of waves gives rise to multiple crossing waves

 \[u(t, x) = \sum_{n=1}^{N} a_n(t, x)e^{i\phi_n(t,x)/\varepsilon} \]

 ⇒ Several amplitude and phase functions.

- Caustics appear at points of transition = concentration of rays.

- Geometrical optics predicts infinite amplitude at caustics.

- Handling multiphase solutions tricky for numerical methods with fixed grids.
Caustics

Concentration of rays.

GO amplitude $a(t, y) \to \infty$ but should be $a(t, y) \sim \varepsilon^{-\alpha}$, $0 < \alpha < 1$.
Gaussian beams

- Approximate, localized, solutions to the wave equation/Schrodinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).

Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes, Kravtsov, ...], Quantum Mechanics, [Heller, Hagedorn, Herman, Kluk, Kay, ...], Plasma Physics, [Pereverzev, Peeters, Maj, ...], Mathematics [Ralston, Hörmander, ...]. No breakdown at caustics.
Gaussian beams

- Approximate, localized, solutions to the wave equation/Schrodinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).
- Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes, Kravtsov, ...], Quantum Mechanics,[Heller, Hagedorn, Herman, Kluk, Kay, ...], Plasma Physics, [Pereverzev, Peeters, Maj, ...], Mathematics [Ralston, Hörmander, ...]
Gaussian beams

- Approximate, localized, solutions to the wave equation/Schrodinger with a Gaussian profile (width $\sim \sqrt{\epsilon}$).
- Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes, Kravtsov, ...], Quantum Mechanics, [Heller, Hagedorn, Herman, Kluk, Kay, ...], Plasma Physics, [Pereverzev, Peeters, Maj, ...], Mathematics [Ralston, Hörmander, ...]
- No breakdown at caustics.
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,

\[\psi(t, y) = A(t, y)e^{i\Phi(t, y)/\varepsilon}, \]

centered around a geometrical optics ray \(x(t) \),

\[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,
 \[v(t, y) = A(t, y)e^{i\Phi(t, y)/\varepsilon}, \]
 centered around a geometrical optics ray \(x(t) \),

 \[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,

\[\psi(t, y) = A(t, y)e^{i\Phi(t, y)/\varepsilon}, \]

centered around a geometrical optics ray \(x(t) \),

\[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |\psi(t, y)| \sim e^{-|y-x(t)|^2/\varepsilon}, \)
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,

\[\mathbf{v}(t, y) = A(t, y)e^{i\Phi(t, y)/\varepsilon}, \]

centered around a geometrical optics ray \(x(t) \),

\[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |\mathbf{v}(t, y)| \sim e^{-|y-x(t)|^2/\varepsilon}, \)
 - Gaussian with width \(\sqrt{\varepsilon} \)
 - Localized around \(x(t) \). (Moves along the space time ray.)
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,

\[\nu(t, y) = A(t, y)e^{i\Phi(t, y)/\epsilon}, \]

centered around a geometrical optics ray \(x(t) \),

\[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |\nu(t, y)| \sim e^{-|y-x(t)|^2/\epsilon}, \)
 - **Gaussian** with width \(\sqrt{\epsilon} \)
 - **Localized** around \(x(t) \). (Moves along the space time ray.)

- Phase \(\Phi(t, y) \) and amplitude \(A(t, y) \) approximated by polynomials locally around \(x(t) \)
Gaussian beams

- Gaussian beams are of the same form as geometrical optics solutions,

\[\psi(t, y) = A(t, y) e^{i\Phi(t, y)}/\varepsilon, \]

centered around a geometrical optics ray \(x(t) \),

\[A(t, y) = a(t, y - x(t)), \quad \Phi(t, y) = \phi(t, y - x(t)). \]

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |\psi(t, y)| \sim \varepsilon e^{-|y-x(t)|^2}/\varepsilon \),

 - **Gaussian** with width \(\sqrt{\varepsilon} \)
 - **Localized** around \(x(t) \). (Moves along the space time ray.)

- Phase \(\Phi(t, y) \) and amplitude \(A(t, y) \) approximated by polynomials locally around \(x(t) \)

- \(\Phi(t, y) \) and \(A(t, y) \) solve eikonal and transport equation only up to \(O(|y - x|^m) \).
The simplest ("first order") Gaussian beams are of the form

\[v(t, y) = a_0(t)e^{i \Phi(t,y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y. \]

i.e. \(A(t, y) \) approximated to 0th order, and \(\Phi(t, y) \) to 2nd order.
First order beams

The simplest ("first order") Gaussian beams are of the form

\[v(t, y) = a_0(t)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y. \]

i.e. \(A(t, y) \) approximated to 0th order, and \(\Phi(t, y) \) to 2nd order.

\[\Rightarrow \]

We require that \(\Phi(t, y) \) solves eikonal to order \(O(|y - x|^3) \) and \(A(t, y) \) solves transport equation to order \(O(|y - x|) \).
First order beams

Let us thus require that

\[\Phi_t^2 - c(y)^2|\nabla \Phi|^2 = O(|y - x(t)|^3), \]

\[A_t + c\frac{\nabla \Phi \cdot \nabla A}{|\nabla \Phi|} + \frac{c^2 \Delta \Phi - \Phi_{tt}}{2c|\nabla \Phi|} A = O(|y - x(t)|), \]
First order beams

Let us thus require that

\[\Phi_t^2 - c(y)^2|\nabla \Phi|^2 = O(|y - x(t)|^3), \]
\[A_t + c \frac{\nabla \Phi \cdot \nabla A}{|\nabla \Phi|} + \frac{c^2 \Delta \Phi - \Phi_{tt}}{2c|\nabla \Phi|} A = O(|y - x(t)|), \]

\[\Rightarrow \text{We obtain ODEs for } \phi_0, x, p, M, a_0. \]

\[\dot{x}(t) = c(x)^2 p, \quad \dot{\phi}_0(t) = 0, \]
\[\dot{p}(t) = -\nabla c(x)/c(x), \quad \dot{M}(t) = -D - MB - B^T M - MCM, \]
\[\dot{a}_0(t) = \frac{a_0}{2} \left(-c(x)p \cdot \nabla c(x) - c(x)^3 p \cdot Mp + c(x)^2 \text{Tr}[M] \right), \]

where \(B, C, D \) are matrix functions involving \(x, p \) and \(c(x) \).
First order beams

Let us thus require that

\[
\Phi_t^2 - c(y)^2|\nabla \Phi|^2 = O(|y - x(t)|^3),
\]

\[
A_t + c \frac{\nabla \Phi \cdot \nabla A}{|\nabla \Phi|} + \frac{c^2 \Delta \Phi - \Phi_{tt}}{2c|\nabla \Phi|} A = O(|y - x(t)|),
\]

\[\Rightarrow\] We obtain ODEs for \(\phi_0, x, p, M, a_0. \)

\[
\begin{align*}
\dot{x}(t) &= c(x)^2 p , \\
\dot{\phi}_0(t) &= 0 , \\
\dot{p}(t) &= -\nabla c(x)/c(x) , \\
\dot{M}(t) &= -D - MB - B^T M - MCM , \\
\dot{a}_0(t) &= \frac{a_0}{2} \left(-c(x)p \cdot \nabla c(x) - c(x)^3 p \cdot Mp + c(x)^2 \text{Tr}[M] \right)
\end{align*}
\]

where \(B, C, D \) are matrix functions involving \(x, p \) and \(c(x) \).

- ODEs easy to solve numerically.
- Beams easy to evaluate:

\[
v(t, y) = a_0(t) e^{i\phi(t,y-x(t))/\varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y.
\]
First order beams

Let us thus require that

$$\Phi_t^2 - c(y)^2|\nabla \Phi|^2 = O(|y - x(t)|^3),$$

$$A_t + c \frac{\nabla \Phi \cdot \nabla A}{|\nabla \Phi|} + \frac{c^2 \Delta \Phi - \Phi_{tt}}{2c|\nabla \Phi|} A = O(|y - x(t)|),$$

⇒ We obtain ODEs for ϕ_0, x, p, M, a_0.

\[
\begin{align*}
\dot{x}(t) &= c(x)^2 p, & \dot{\phi}_0(t) &= 0, \\
\dot{p}(t) &= -\nabla c(x)/c(x), & \dot{M}(t) &= -D - MB - B^T M - MCM, \\
\dot{a}_0(t) &= \frac{a_0}{2} \left(-c(x)p \cdot \nabla c(x) - c(x)^3 p \cdot Mp + c(x)^2 \text{Tr}[M]\right),
\end{align*}
\]

⇒ Asymptotic order of accuracy is

$$\nu_{tt} - c(y)^2 \Delta \nu = O \left(\frac{1}{\sqrt{\varepsilon}}\right).$$
Higher order beams

More generally, we can construct higher order beams. Let

\[\mathbf{v}(t, y) = a(t, y - x(t))e^{i\phi(t, y - x(t))/\varepsilon}, \]

where, for order \(K \) beams,
Higher order beams

More generally, we can construct higher order beams. Let

$$v(t, y) = a(t, y - x(t)) e^{i \phi(t, y-x(t))/\epsilon},$$

where, for order K beams,

- The phase is a Taylor polynomial of order $K + 1$,

$$\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t)y + \sum_{|\beta|=3}^{K+1} \frac{1}{\beta!} \phi_\beta(t)y^\beta.$$
Higher order beams

More generally, we can construct higher order beams. Let

\[\nu(t, y) = a(t, y - x(t)) e^{i \phi(t, y - x(t)) / \varepsilon}, \]

where, for order \(K \) beams,

- The phase is a Taylor polynomial of order \(K + 1 \),

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t) y + \sum_{|\beta|=3} \frac{1}{\beta!} \phi_{\beta}(t) y^\beta. \]

- \(A \) is now a finite WKB expansion,

\[a(t, y) = \sum_{j=0}^{[K/2]-1} \varepsilon^j a_j(t, y). \]
Higher order beams

More generally, we can construct higher order beams. Let

$$v(t, y) = a(t, y - x(t))e^{i\phi(t, y-x(t))/\varepsilon},$$

where, for order K beams,

- The phase is a Taylor polynomial of order $K + 1$,

$$\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t)y + \sum_{|\beta|=3}^{K+1} \frac{1}{\beta!} \phi_{\beta}(t)y^\beta.$$

- A is now a finite WKB expansion,

$$a(t, y) = \sum_{j=0}^{[K/2]-1} \varepsilon^j a_j(t, y)$$

- Each amplitude term a_j is a Taylor polynomial to order $K - 2j - 1$

$$a_j(t, y) = \sum_{|\beta|=0}^{K-2j-1} \frac{1}{\beta!} a_{j, \beta}(t)y^\beta$$
Higher order beams

We now require that

- $\Phi(t, y) = \phi(t, y - x)$) solves eikonal equation to order $|y - x|^{K+2}$
- $a_j(t, y - x)$ solve higher order transport equations to order $|y - x|^{K-2j}$
Higher order beams

We now require that

- \(\Phi(t, y) = \phi(t, y - x) \) solves eikonal equation to order \(|y - x|^{K+2} \)
- \(a_j(t, y - x) \) solve higher order transport equations to order \(|y - x|^{K-2j} \)

Again, this gives ODEs for all Taylor coefficients,

\[
\begin{align*}
\dot{x}(t) &= c(x)^2 \rho, & \dot{\phi}_0(t) &= 0, \\
\dot{\rho}(t) &= -\nabla c(x)/c(x), & \dot{M}(t) &= -D - MB - B^T M - MCM, \\
\dot{a}_{j,\beta}(t) &= \ldots, & \dot{\phi}_\beta(t) &= \ldots,
\end{align*}
\]
Higher order beams

We now require that

- \(\Phi(t, y) = \phi(t, y - x) \) solves eikonal equation to order \(|y - x|^{K+2}\)
- \(a_j(t, y - x) \) solve higher order transport equations to order \(|y - x|^{K-2j}\)

Again, this gives ODEs for all Taylor coefficients,

\[
\begin{align*}
\dot{x}(t) &= c(x)^2 \rho, \\
\dot{\rho}(t) &= -\nabla c(x)/c(x), \\
\dot{a}_j(t) &= \ldots, \\
\dot{\phi}_0(t) &= 0, \\
\dot{\phi}_\beta(t) &= \ldots,
\end{align*}
\]

Asymptotic order of accuracy is

\[
v_{tt} - c(y)^2 \Delta v = O\left(\varepsilon^{K/2-1}\right).
\]
\[v(t, y) = a_0(t)e^{i\phi(t, y-x(t))/\varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y \]
Gaussian beams

Properties

\[v(t, y) = a_0(t)e^{i\phi(t,y-x(t))/\varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
Gaussian beams
Properties

\[v(t, y) = a_0(t) e^{i \phi(t, y - x(t))} / \varepsilon, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
- If \(M(0) \) is symmetric and \(\Re M(0) \) is positive definite then this is true for \(M(t) \) (which exists) for all \(t > 0 \).
Gaussian beams

Properties

\[v(t, y) = a_0(t) e^{i \phi(t, y - x(t)) / \varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
- If \(M(0) \) is symmetric and \(\Im M(0) \) is positive definite then this is true for \(M(t) \) (which exists) for all \(t > 0 \).
- \(a_0(t) \) exists everywhere (no blow-up at caustics)
Gaussian beams

Properties

\[v(t, y) = a_0(t)e^{i\phi(t, y-x(t))}/\varepsilon, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
- If \(M(0) \) is symmetric and \(\Re M(0) \) is positive definite then this is true for \(M(t) \) (which exists) for all \(t > 0 \).
- \(a_0(t) \) exists everywhere (no blow-up at caustics)
- Shape of beam remains Gaussian

Olof Runborg (KTH)

Gaussian Beam Approximation

IPP Garching, 2013
Gaussian beams

Properties

\[v(t, y) = a_0(t)e^{i\phi(t, y-x(t))/\varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
- If \(M(0) \) is symmetric and \(\Im M(0) \) is positive definite then this is true for \(M(t) \) (which exists) for all \(t > 0 \).
- \(a_0(t) \) exists everywhere (no blow-up at caustics)
- Shape of beam remains Gaussian
- For high order need cutoff in a neighborhood of central ray to avoid spurious growth.

\[v(t, y) = a(t, y - x(t))e^{i\phi(t, y-x(t))/\varepsilon} \rho(y - x(t)) \]
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let \(v(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{\text{GB}}(t, y) = \varepsilon - \frac{n}{2} \int_{K_0} v(t, y; z) \, dz
\]

\((n - \text{dimension, } K_0 - \text{compact set})\)
To approximate more general solutions, use superpositions of beams. Let \(\nu(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} a_0(t; z) e^{\frac{i}{\varepsilon} \left[\phi_0(t; z) + (y - x(t; z)) \cdot p(t; z) + \frac{1}{2} (y - x(t; z)) \cdot M(t; z)(y - x(t; z)) \right]}
\]

\((n - \text{dimension, } K_0 - \text{compact set}) \)
To approximate more general solutions, use superpositions of beams. Let \(\nu(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{GB}(t, y) = e^{-n \frac{t}{2}} \int_{K_0} a_0(t; z) e^{i \frac{1}{\varepsilon} [\phi_0(t; z) + (y - x(t; z)) \cdot p(t; z) + \frac{1}{2} (y - x(t; z) \cdot M(t; z)(y - x(t; z))\]

For large values of \(\varepsilon \) it is sufficient to describe e.g. WKB data:

\[
\| A(y) e^{i \phi(y) / \varepsilon} - u_{GB}(0, \cdot) \|_E = O(\varepsilon^{-K_0/2}),
\]

Prefactor normalizes beams appropriately, \(\| u_{GB} \|_E = O(1) \).

By linearity of the wave equation equation a sum of solutions is also a solution.
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let \(v(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} a_0(t; z) e^{\frac{i}{\varepsilon} \left[\phi_0(t; z) + (y - x(t; z)) \cdot p(t; z) + \frac{1}{2} (y - x(t; z)) \cdot M(t; z)(y - x(t; z)) \right]}
\]

\((n – \text{dimension}, K_0 – \text{compact set}) \)

- By linearity of the wave equation equation a sum of solutions is also a solution.
- \(u_{GB}(t, y) \) is an asymptotic solution with initial data \(u_{GB}(0, y) \).

Sufficient to describe e.g. WKB data: \(\exists K\)-th order beams s.t.

\[
\left\| A(y) e^{i \phi(y)/\varepsilon} - u_{GB}(0, \cdot) \right\|_E = O(\varepsilon^K/2),
\]

[Tanushev, 2007].
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let \(v(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
 u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} a_0(t, z) e^{i \frac{\phi_0(t; z) + (y - x(t; z)) \cdot p(t; z) + \frac{1}{2} (y - x(t; z) \cdot M(t; z) (y - x(t; z)))}{\varepsilon}}
\]

\((n – \text{dimension}, \; K_0 – \text{compact set}) \)

- By linearity of the wave equation equation a sum of solutions is also a solution.
- \(u_{GB}(t, y) \) is an asymptotic solution with initial data \(u_{GB}(0, y) \).
 Sufficient to describe e.g. WKB data: \(\exists K\text{-th order beams s.t.} \)

\[
 \left\| A(y) e^{i\phi(y)/\varepsilon} - u_{GB}(0, \cdot) \right\|_{E} = O(\varepsilon^{K/2}),
\]

[Tanushev, 2007].

- Prefactor normalizes beams appropriately, \(\| u_{GB} \|_{E} = O(1) \).
Superpositions of Gaussian beams

More general phase space superposition:

Let \(v(t, y; z, p) \) be a beam starting from the point \(y = z \) with momentum \(p \) and define

\[
u_{GB}(t, y) = \epsilon^{-n} \int_{\mathcal{K}_0} v(t, y; z, p) dz dp.
\]
Superpositions of Gaussian beams

More general phase space superposition:

Let \(v(t, y; z, p) \) be a beam starting from the point \(y = z \) with momentum \(p \) and define

\[
 u_{GB}(t, y) = \epsilon^{-n} \int_{\tilde{K}_0} v(t, y; z, p) \, dz \, dp.
\]

\(u_{GB}(t, y) \) is an asymptotic solution with initial data

\[
 u_{GB}(0, y) = \epsilon^{-n} \int_{\tilde{K}_0} v(0, y; z, p) \, dz \, dp.
\]

Can describe more general data. (C.f. FBI transform.)
Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_{j} v(t, y; z_j) \Delta z^n. \]
Numerical methods

- Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

- Lagrangian methods – Solve ODEs \(\forall z_j \) with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays \((M, a_j, \beta, \phi_\beta, \ldots)\) [Hill, Klimes, ...]
Numerical methods

- Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z)dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j)\Delta z^n. \]

- Lagrangian methods – Solve ODEs \(\forall z_j \) with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays \((M, a_{j,\beta}, \phi, \ldots)\) [Hill, Klimes, …]

- Eulerian methods – obtain parameters from solving PDEs on fixed grids [Leung, Qian, Burridge,07], [Jin, Wu, Yang,08], [Jin, Wu, Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10],…

Numerical methods

- Approximate superposition integral by sum (trapezoidal rule)
 \[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

- Lagrangian methods – Solve ODEs \(\forall z_j \) with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays \((M, a_{j,\beta}, \phi_\beta, \ldots) \) [Hill, Klimes, \ldots]

- Eulerian methods – obtain parameters from solving PDEs on fixed grids [Leung, Qian, Burridge,07], [Jin, Wu, Yang,08], [Jin, Wu, Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10], \ldots

- Wavefront methods – solve for parameters on a wave front [Motamed, OR,09]
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim\) number of beams since each beam is \(O(1)\).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim\) width of beams.
 \(\Rightarrow\) cost \(\sim\) \(O(\varepsilon^{-n/2})\)
 C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)})\)
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim\) number of beams since each beam is \(O(1)\).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim\) width of beams.
 \(\Rightarrow\) cost \(\sim\) \(O(\varepsilon^{-n/2})\)
- C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)})\)
- For phase space superposition would get \(\sim O(\varepsilon^{-n})\) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon}\) for WKB data)
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim \) number of beams since each beam is \(O(1) \).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim \) width of beams.
 \(\Rightarrow \) cost \(\sim O(\varepsilon^{-n/2}) \)
 C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)}) \)

- For phase space superposition would get \(\sim O(\varepsilon^{-n}) \) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon} \) for WKB data)

- Spreading of beams
 Wide beams \(\Rightarrow \) large Taylor approximation errors
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim\) number of beams since each beam is \(O(1)\).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim\) width of beams.
 \(\Rightarrow\) cost \(\sim O(\varepsilon^{-n/2})\)
 C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)})\)

- For phase space superposition would get \(\sim O(\varepsilon^{-n})\) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon}\) for WKB data)

- Spreading of beams
 Wide beams \(\Rightarrow\) large Taylor approximation errors

- Initial data approximation
 Many degrees of freedom. Can have huge impact on accuracy at later times.
Approximation errors

Let

\[\Box := \partial_{tt} + c(y)^2 \Delta. \]

Suppose \(u \) is exact solution of wave equation and \(\tilde{u} \) is the Gaussian beam approximation

\[\Box u = 0, \quad \Box \tilde{u} = O(\epsilon^{K/2-1}). \]

What is the norm error in \(\tilde{u} \), i.e. \(\| u - \tilde{u} \| \)?
Approximation errors

Let
\[\Box := \partial_{tt} + c(y)^2 \Delta. \]

Suppose \(u \) is exact solution of wave equation and \(\bar{u} \) is the Gaussian beam approximation
\[\Box u = 0, \quad \Box \bar{u} = O(\varepsilon^{K/2-1}). \]

What is the norm error in \(\bar{u} \), i.e. \(\| u - \bar{u} \| \)?

Use \(\varepsilon \)-scaled energy norm
\[\| u \|_E^2 := \frac{\varepsilon^2}{2} \int_{\mathbb{R}^n} |u_t|^2 c(y)^{-2} + |\nabla u|^2 \, dy. \]

This is \(O(1) \) for WKB type initial data,
\[u(0, x) = A(x) e^{i\phi(x)/\varepsilon} \Rightarrow \| u(0, \cdot) \|_E = O(1). \]
Approximation errors

Use well-posedness (stability) estimate for wave equation solutions w:

$$
\| w(t, \cdot) \|_E \leq \| w(0, \cdot) \|_E + \varepsilon C(T) \sup_{t \in [0, T]} \| \Box w(t, \cdot) \|_{L^2}, \quad 0 \leq t \leq T.
$$
Approximation errors

Use well-posedness (stability) estimate for wave equation solutions w:

$$\|w(t, \cdot)\|_E \leq \|w(0, \cdot)\|_E + \varepsilon C(T) \sup_{t \in [0, T]} \|\Box w(t, \cdot)\|_{L^2}, \quad 0 \leq t \leq T.$$

Since, $\Box u = 0$ and by linearity

$$\Box[\tilde{u} - u] = \Box \tilde{u}.$$

Hence, assuming $u(0, x) = \tilde{u}(0, x)$,

$$\|\tilde{u}(t, \cdot) - u(t, \cdot)\|_E \leq \varepsilon C(T) \sup_{t \in [0, T]} \|\Box \tilde{u}(t, \cdot)\|_{L^2}, \quad 0 \leq t \leq T.$$

Error in $\tilde{u} \sim$ how well it satisfies equation, plus one order in ε
By earlier construction

\[\square \tilde{u}_{GB}(t, x) = O(\varepsilon^{K/2 - 1}). \]

and

\[\| \tilde{u}(t, \cdot) - u(t, \cdot) \|_E \leq \varepsilon C(T) \sup_{t \in [0, T]} \| \square \tilde{u}(t, \cdot) \|_{L^2}, \quad 0 \leq t \leq T. \]
By earlier construction

\[\Box \tilde{u}_{GB}(t, x) = O(\varepsilon^{K/2 - 1}). \]

and

\[\|\tilde{u}(t, \cdot) - u(t, \cdot)\|_{E} \leq \varepsilon C(T) \sup_{t \in [0, T]} \|\Box \tilde{u}(t, \cdot)\|_{L^2}, \quad 0 \leq t \leq T. \]

Hence, after appropriate normalization (so \(\|\tilde{u}\|_{E} = 1 \)) and assuming zero initial data error, [Ralston, 82]

\[\sup_{t \in [0, T]} \|\tilde{u}(t, \cdot) - u(t, \cdot)\|_{E} \leq O(\varepsilon^{K/2}). \]

Estimate is sharp.
Norm estimates of $||u - u_{GB}||$ only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,…]

Need to check how well u_{GB} satisfies equation

$$\Box u_{GB} := \partial_{tt} u_{GB} + c(y)^2 \Delta u_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$
Approximation Errors Superpositions

Norm estimates of \(\| u - u_{GB} \| \) only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang, ...]

Need to check how well \(u_{GB} \) satisfies equation

\[
\Box u_{GB} := \partial_{tt} u_{GB} + c(y)^2 \Delta u_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-n/2} \int_{K_0} v(t, y; z) dz.
\]

By linearity,

\[
\Box u_{GB} = \varepsilon^{-n/2} \int_{K_0} \Box v(t, y; z) dz.
\]
Norm estimates of $\|u - u_{GB}\|$ only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang, ...]

Need to check how well u_{GB} satisfies equation

$$\Box u_{GB} := \partial_{tt} u_{GB} + c(y)^2 \Delta u_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-n/2} \int_{K_0} v(t, y; z) dz.$$

By linearity and simple estimate,

$$|\Box u_{GB}| \leq \varepsilon^{-n/2} \int_{K_0} |\Box v(t, y; z)| dz.$$
Approximation Errors Superpositions

Norm estimates of $||u - u_{GB}||$ only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang, ...]

Need to check how well u_{GB} satisfies equation

$$\Box u_{GB} := \partial_{tt} u_{GB} + c(y)^2 \Delta u_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$

By linearity and simple estimate,

$$|\Box u_{GB}| \leq \varepsilon^{-n/2} \int_{K_0} |\Box v(t, y; z)| dz.$$

After scaling and Cauchy–Schwarz,

$$||\Box u_{GB}(y)||_2^2 \leq C\varepsilon^{-n} \int_{K_0} ||\Box v(t, y; z)||_2^2 dz \leq C\varepsilon^{-n} \varepsilon^{K-2+n/2}.$$
Approximation Errors Superpositions

Norm estimates of $||u - u_{GB}||$ only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang, ...]

Need to check how well u_{GB} satisfies equation

$$\Box u_{GB} := \partial_{tt} u_{GB} + c(y)^2 \Delta u_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$

- By linearity and simple estimate,
 $$|\Box u_{GB}| \leq \varepsilon^{-n/2} \int_{K_0} |\Box v(t, y; z)| dz.$$

- After scaling and Cauchy–Schwarz,
 $$||\Box u_{GB}(y)||^2 \leq C \varepsilon^{-n} \int_{K_0} ||\Box v(t, y; z)||^2 dz \leq C \varepsilon^{-n} \varepsilon^{K-2+n/2}.$$

- Gives error estimate for u_{GB}
 $$||u - u_{GB}||_E \leq \varepsilon C ||\Box u_{GB}||_2 \leq C \varepsilon^{K/2-n/4}.$$
Basic estimate

$$\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2-n/4}).$$

is not sharp. E.g. it does not predict convergence for first order beams in 2D.
Approximation errors superpositions

- Basic estimate

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2 - n/4}) . \]

is not sharp. E.g. it does not predict convergence for first order beams in 2D.

- Problem: The step

\[|\Box u_{GB}| \leq \varepsilon^{-n/2} \int_{K_0} |\Box v(t, y; z)| dz \]

ignores cancellations between neighbouring beams. Very bad except at caustics where beams interfere constructively.
Approximation errors superpositions

- Basic estimate

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2 - n/4}). \]

is not sharp. E.g. it does not predict convergence for first order beams in 2D.

- Problem: The step

\[|\Box u_{GB}| \leq \varepsilon^{-n/2} \int_{K_0} |\Box v(t, y; z)| dz \]

ignores cancellations between neighbouring beams. Very bad except at caustics where beams interfere constructively.

- Gives a dependence on dimension \(n \) in estimate.
Theorem (Liu, Tanushev, O.R., 2010)

For the wave equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) \, . \]

For the Schrödinger equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2}) \, . \]
Theorem (Liu, Tanushev, O.R., 2010)

For the wave equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) . \]

For the Schrödinger equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2}) . \]

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).

Error estimate

Theorem (Liu, Tanushev, O.R., 2010)

For the wave equation,

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2}) \]

For the Schrödinger equation,

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2}) \]

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).
- Convergence of all beams independent of dimension and presence of caustics.
Error estimate

Theorem (Liu, Tanushev, O.R., 2010)

For the wave equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) . \]

For the Schrödinger equation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2}) . \]

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).
- Convergence of all beams independent of dimension and presence of caustics.
- Result also for general scalar, strictly hyperbolic \(m \)-th order PDEs.
Error estimate

Theorem (Liu, Tanushev, O.R., 2010)

For the wave equation,

\[
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^K/2) .
\]

For the Schrödinger equation,

\[
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^K/2) .
\]

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).
- Convergence of all beams independent of dimension and presence of caustics.
- Result also for general scalar, strictly hyperbolic \(m \)-th order PDEs.
For time-harmonic waves consider Helmholtz equation

\[\Delta u + (i\alpha \varepsilon^{-1} + \varepsilon^{-2}) n^2 u = g, \quad x \in \mathbb{R}^d. \]

where \(n(x) = 1/c(x) \), \(\alpha \) = damping and \(g \) supported on a co-dimension one manifold. (Ex. \(g = g_0(x_2)\delta(x_1)/\varepsilon \).)
Gaussian beams for Helmholtz

For time-harmonic waves consider Helmholtz equation

\[\Delta u + (i\alpha \varepsilon^{-1} + \varepsilon^{-2}) n^2 u = g, \quad x \in \mathbb{R}^d. \]

where \(n(x) = 1/c(x) \), \(\alpha \) = damping and \(g \) supported on a co-dimension one manifold. (Ex. \(g = g_0(x_2)\delta(x_1)/\varepsilon. \))

- "Blobs" ⇒ "Fat rays" localized around geometrical optics ray
Gaussian beams for Helmholtz

For time-harmonic waves consider Helmholtz equation

$$\Delta u + (i\alpha \varepsilon^{-1} + \varepsilon^{-2}) n^2 u = g, \quad x \in \mathbb{R}^d.$$

where $n(x) = 1/c(x)$, α=damping and g supported on a co-dimension one manifold. (Ex. $g = g_0(x_2)\delta(x_1)/\varepsilon$.)

- "Blobs" \Rightarrow "Fat rays" localized around geometrical optics ray
- To leading order gaussian transversely to ray
Gaussian beams for Helmholtz

- Same ansatz,

\[v = a(s, y - x(s)) e^{i \phi(s, y - x(s)) / \varepsilon}, \]

centered around a geometrical optics ray \(x(s) \) but \(s \) not time.
Gaussian beams for Helmholtz

- Same ansatz,

\[v = a(s, y - x(s))e^{i\phi(s, y - x(s))/\varepsilon}, \]

centered around a geometrical optics ray \(x(s) \) but \(s \) not time.

- First order beams are of the form

\[\phi = \phi_0(s) + y \cdot p(s) + \frac{1}{2}y \cdot M(s)y, \quad a = a_0(s), \]

i.e. \(a \) approximated to 0th order, and \(\phi \) to 2nd order.
Gaussian beams for Helmholtz

- Same ansatz,

\[v = a(s, y - x(s))e^{i\phi(s, y - x(s))}/\varepsilon, \]

centered around a geometrical optics ray \(x(s) \) but \(s \) not time.

- First order beams are of the form

\[\phi = \phi_0(s) + y \cdot p(s) + \frac{1}{2} y \cdot M(s)y, \quad a = a_0(s), \]

i.e. \(a \) approximated to 0th order, and \(\phi \) to 2nd order.

- Similar ODEs for \(a_0, x, p, M, \phi_0 \) as in the time-dependent case.
Gaussian beams for Helmholtz

- Same ansatz,

\[v = a(s, y - x(s))e^{i\phi(s, y - x(s))/\varepsilon}, \]

centered around a geometrical optics ray \(x(s) \) but \(s \) not time.

- First order beams are of the form

\[\phi = \phi_0(s) + y \cdot p(s) + \frac{1}{2} y \cdot M(s)y, \quad a = a_0(s), \]

i.e. \(a \) approximated to 0th order, and \(\phi \) to 2nd order.

- Similar ODEs for \(a_0, x, p, M, \phi_0 \) as in the time-dependent case.

- Similar properties as in time-dependent case:
 - Phase \(\phi \) evaluated on ray = \(\phi_0(s) \) is real valued
 - If \(M(0) \) is symmetric and \(\Im M(0) \) is positive definite then this is true for \(M(s) \) (which exists) for all \(s > 0 \).
 - \(a_0(s) \) exists everywhere (no blow-up at caustics)
\[v(y) = \]
\[a(s, y - x(s)) e^{i\phi(s, y - x(s)) / \varepsilon}, \]

How to evaluate "\((s, y - x(s))\)" in expression for beam?
Gaussian beams for Helmholtz

Extension off ray

\[v(y) = \]

\[a(s^*, y - x(s^*)) e^{i\phi(s^*, y - x(s^*))}/\varepsilon, \]

\[s^* = s^*(y) \]

- How to evaluate "\((s, y - x(s))\)" in expression for beam?
- No distinguished "time" variable ⇒ Extend beam by Taylor expansion transversely to ray:
 - Let \(s^* = s^*(y) \) such that \(x(s^*) \) is closest point on ray to \(y \).
Gaussian beams for Helmholtz

Extension off ray

\[
\nu(y) = a(s^*, y - x(s^*)) e^{i \phi(s^*, y - x(s^*))}/\varepsilon \times \varrho(y - x(s^*)) ,
\]
\[
s^* = s^*(y)
\]

- How to evaluate "\((s, y - x(s))" in expression for beam?"
- No distinguished "time" variable \(\Rightarrow \) Extend beam by Taylor expansion transversely to ray:
 - Let \(s^* = s^*(y) \) such that \(x(s^*) \) is closest point on ray to \(y \).
- Only well-defined close enough to ray \(\Rightarrow \) Cutoff \(\varrho(y) \) needed also for first order beams (size \(\eta \))
Helmholtz with source on $\Sigma = \{ y : \rho(y) = 0 \}$.

$$\Delta u + (i\alpha\varepsilon^{-1} + \varepsilon^{-2})n^2 u = \frac{1}{\varepsilon} g(y)\delta(\rho(y)).$$
Gaussian beams for Helmholtz

Source

Helmholtz with source on $\Sigma = \{ y : \rho(y) = 0 \}$.

$$\Delta u + (i\alpha \varepsilon^{-1} + \varepsilon^{-2})n^2 u = \frac{1}{\varepsilon} g(y) \delta(\rho(y)).$$

- Beams shoot out orthogonally in each direction from Σ
Helmholtz with source on $\Sigma = \{ y : \rho(y) = 0 \}$.

\[\Delta u + (i\alpha\varepsilon^{-1} + \varepsilon^{-2})n^2 u = \frac{1}{\varepsilon} g(y)\delta(\rho(y)). \]

- Beams shoot out orthogonally in each direction from Σ
- Gives beams $v^\pm(y)$, with $v^+(y) = 0$ when $\rho(y) < 0$ etc.
Helmholtz with source on $\Sigma = \{y : \rho(y) = 0\}$.

$$Lu =: \Delta u + (i\alpha\varepsilon^{-1} + \varepsilon^{-2})n^2 u = \frac{1}{\varepsilon}g(y)\delta(\rho(y)).$$

• Beams shoot out orthogonally in each direction from Σ
• Gives beams $v^\pm(y)$, with $v^+(y) = 0$ when $\rho(y) < 0$ etc.
• Note that $v^+ = v^-$ on Σ, but $\nabla\phi^+ = -\nabla\phi^-$ so that $L(v^+ + v^-) \sim \delta(\rho(y)) + \text{smooth part.}$
\[Lu =: \Delta u + (i\alpha\varepsilon^{-1} + \varepsilon^{-2})n^2 u \]
\[= \frac{1}{\varepsilon} g(y)\delta(\rho(y)). \]

- Let \(v^\pm(y; z) \) be the beams starting from \(z \in \Sigma \) and define the superposition

\[
\begin{align*}
\sum_{x(s)} x_0 \\
\rho > 0 \\
\rho < 0 \\
u^+(x) \\
u^-(x) \\
\eta \\

u_{GB}(y) = \varepsilon^{-\frac{n-1}{2}} \int \sum_{y} [v^+(y; z) + v^-(y; z)] dA_z
\end{align*}
\]
Gaussian beams for Helmholtz

Superposition

\[Lu =: \Delta u + (i\alpha\varepsilon^{-1} + \varepsilon^{-2})n^2 u \]
\[= \frac{1}{\varepsilon} g(y) \delta(\rho(y)) . \]

- Let \(v^\pm(y; z) \) be the beams starting from \(z \in \Sigma \) and define superposition

\[u_{GB}(y) = \varepsilon^{-\frac{n-1}{2}} \int_{\Sigma} [v^+(y; z) + v^-(y; z)] dA_z \]

(1)

- Choose initial data for beam \(v^\pm(z; z) \) such that

\[Lu_{GB}(y) \sim \frac{1}{\varepsilon} \tilde{g}(y) \delta(\rho(y)) + f_{GB} \]

with \(\tilde{g} \approx g \).
Error estimate

Kth order beams, Helmholtz case

Theorem (Liu, Ralston, Tanushev, O.R., 2013)

Assume

- **Smooth, compactly supported source** $g(x)$
- **Index of refraction** $n(x)$ smooth and constant for $|x| > R$
- **No trapped rays**: $\exists L$ s.t. $|x(\pm L)| > 2R$ if $|x(0)| < R$, $|p(0)| = n(x(0))$
- **No initial data error** $\tilde{g} = g$

Then with C independent of ϵ and α,

$$\|u - u_{GB}\|_{L^2(|x|<R)} \leq C\epsilon^{K/2},$$
Theorem (Liu, Ralston, Tanushev, O.R., 2013)

Assume

- **Smooth, compactly supported source** $g(x)$
- **Index of refraction** $n(x)$ smooth and constant for $|x| > R$
- **No trapped rays**: $\exists L \text{ s.t. } |x(\pm L)| > 2R$ if $|x(0)| < R$, $|p(0)| = n(x(0))$
- **No initial data error** $\tilde{g} = g$.

Then with C independent of ε and α,

$$||u - u_{GB}||_{L^2(|x|<R)} \leq C\varepsilon^{K/2},$$

- Superposition in physical space.
Error estimate

Kth order beams, Helmholtz case

Theorem (Liu, Ralston, Tanushev, O.R., 2013)

Assume

- **Smooth, compactly supported source** $g(x)$
- **Index of refraction** $n(x)$ smooth and constant for $|x| > R$
- **No trapped rays**: $\exists L \text{ s.t. } |x(\pm L)| > 2R$ if $|x(0)| < R$, $|p(0)| = n(x(0))$
- **No initial data error** $\tilde{g} = g$

Then with C independent of ε and α,

$$\|u - u_{GB}\|_{L^2(|x|<R)} \leq C\varepsilon^{K/2},$$

- Superposition in physical space.
- Convergence of all beams independent of dimension and presence of caustics.
Sketch of proof, wave equation

- Use energy estimate

\[\|u_{GB}(t, \cdot) - u(t, \cdot)\|_E \leq \|u_{GB}(0, \cdot) - u(0, \cdot)\|_E + C\varepsilon \sup_{t \in [0, T]} \|\Box u_{GB}(t, \cdot)\|_{L^2}, \]

The residual is of the form

\[\Box u_{GB}(t, y) = \varepsilon K/2 - q J \sum_{j=1}^{J} \varepsilon r_j T_{\varepsilon j}[f_j](t, y) + O(\varepsilon^\infty), \]

where \(r_j \geq 0, J \) finite and \(f_j \in L^2 \) (all independent of \(\varepsilon \)).

\(T_{\varepsilon j} : L^2 \rightarrow L^2 \) belongs to a class of oscillatory integral operators.

Together we get (if initial data exact)

\[\|u_{GB}(t, \cdot) - u(t, \cdot)\|_E \leq C(T) \varepsilon K/2 J \sum_{j=1}^{J} \varepsilon r_j \|T_{\varepsilon j}\|_{L^2} |f_j|_{L^2} + O(\varepsilon^\infty). \]
Sketch of proof, wave equation

- Use energy estimate

\[\|u_{GB}(t, \cdot) - u(t, \cdot)\|_E \leq \|u_{GB}(0, \cdot) - u(0, \cdot)\|_E + C\varepsilon \sup_{t \in [0, T]} \|\Box u_{GB}(t, \cdot)\|_{L^2}, \]

- The residual is of the form

\[\Box u_{GB}(t, y) = \varepsilon^{K/2-q} \sum_{j=1}^{J} \varepsilon^{r_j} T_j^\varepsilon[f_j](t, y) + O(\varepsilon^\infty), \]

where \(r_j \geq 0, J \text{ finite and } f_j \in L^2 \) (all independent of \(\varepsilon \)).

\(T_j^\varepsilon : L^2 \to L^2 \) belongs to a class of oscillatory integral operators.
Sketch of proof, wave equation

- Use energy estimate

\[\| u_{GB}(t, \cdot) - u(t, \cdot) \|_E \leq \| u_{GB}(0, \cdot) - u(0, \cdot) \|_E + C\varepsilon \sup_{t \in [0, T]} \| \Box u_{GB}(t, \cdot) \|_{L^2} , \]

- The residual is of the form

\[\Box u_{GB}(t, y) = \varepsilon^{K/2 - q} \sum_{j=1}^{J} \varepsilon^{r_j} T_j^{\varepsilon}[f_j](t, y) + O(\varepsilon^{\infty}) , \]

where \(r_j \geq 0, J \) finite and \(f_j \in L^2 \) (all independent of \(\varepsilon \)).

\(T_j^{\varepsilon} : L^2 \to L^2 \) belongs to a class of oscillatory integral operators.

- Together we get (if initial data exact)

\[\| u_{GB}(t, \cdot) - u(t, \cdot) \|_E \leq C(T)\varepsilon^{K/2} \sum_{j=1}^{J} \varepsilon^{r_j} \| T_j^{\varepsilon} \|_{L^2} \| f_j \|_{L^2} + O(\varepsilon^{\infty}) \]
We have

\[\| u_{GB}(t, \cdot) - u(t, \cdot) \|_E \leq C(T) \varepsilon^{K/2} \sum_{j=1}^J \| T_j^\varepsilon \|_{L^2} + O(\varepsilon^\infty) \]

where, in its simplest form,

\[T^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t,y-x(t;z);z)/\varepsilon} dz, \]

for some multi-index \(\alpha \), Gaussian beam phase \(\phi \) and geometrical optics rays \(x(t; z) \) with \(x(0; z) = z \).
Sketch of proof, cont.

We have

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_E \leq C(T)\varepsilon^{K/2} \sum_{j=1}^{J} \|T_j^\varepsilon\|_{L^2} + O(\varepsilon^\infty)$$

where, in its simplest form,

$$T_j^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)/\varepsilon} \, dz,$$

for some multi-index α, Gaussian beam phase ϕ and geometrical optics rays $x(t; z)$ with $x(0; z) = z$.

Result follows if we prove that T^ε is bounded in L^2 independent of ε, $\|T^\varepsilon\|_{L^2} \leq C$.

This is the key estimate of our proof.
Sketch of proof, cont.

Estimate of $||T^\varepsilon||_{L^2}$, where

$$T^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)/\varepsilon} dz.$$

Main difficulty: no globally invertible map $x(0; z) = z \rightarrow x(t; z)$ because of caustics.
Sketch of proof, cont.

Estimate of $||T^\varepsilon||_{L^2}$, where

$$T^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)/\varepsilon} \, dz.$$

- Main difficulty: no globally invertible map $x(0; z) = z \rightarrow x(t; z)$ because of caustics.
- Mapping $(x(0; z), p(0; z)) \rightarrow (x(t; z), p(t; z))$ is however globally invertible and smooth. Gives the "non-squeezing" property,

$$c_1|z - z'| \leq |p(t; z) - p(t; z')| + |x(t; z) - x(t; z')| \leq c_2|z - z'|.$$

Olof Runborg (KTH)
Gaussian Beam Approximation
IPP Garching, 2013
Sketch of proof, cont.

Estimate of $||\mathcal{T}^\varepsilon||_{L^2}$, where

$$
\mathcal{T}^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)/\varepsilon} dz.
$$

- Main difficulty: no globally invertible map $x(0; z) = z \to x(t; z)$ because of caustics.
- Mapping $(x(0; z), p(0; z)) \to (x(t; z), p(t; z))$ is however globally invertible and smooth. Gives the "non-squeezing" property,

$$
c_1|z - z'| \leq |p(t; z) - p(t; z')| + |x(t; z) - x(t; z')| \leq c_2|z - z'|.
$$

- Allows us to use stationary phase arguments close to caustics, and carefully control cancellations of oscillations there (similar to [Swart,Rousse], [Bougacha, Akian, Alexandre]).
The estimate
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) \]
is sharp for individual beams (relative error). But for superpositions?

Predicts convergence rate of first order beam to be only \(O(\sqrt{\varepsilon}) \).

These beams are based on the same high frequency approximation as geometrical optics which has \(O(\varepsilon) \) accuracy.

Numerical experiments suggest a better rate for odd order beams.

For the Helmholtz case we have proved \([\text{Motamed, OR}]\) that
\[|u(x) - u_{GB}(x)| \leq O(\varepsilon^\lceil K/2 \rceil) \]
for the Taylor expansion part of the error away from caustics. This gives \(O(\varepsilon) \) for first order beams.

More error cancellations coming in for odd order beams? (\(\Rightarrow \) no gain in using even order beams)
The estimate

$$\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2})$$

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only $O(\sqrt{\varepsilon})$.
- These beams are based on same high frequency approximation as geometrical optics which has $O(\varepsilon)$ accuracy.

Numerical experiments suggests a better rate for odd order beams.
The estimate

$$\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2})$$

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only $O(\sqrt{\varepsilon})$. These beams are based on same high frequency approximation as geometrical optics which has $O(\varepsilon)$ accuracy.
- Numerical experiments suggests a better rate for odd order beams.
Approximation errors

Remarks

The estimate
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) \]
is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only \(O(\sqrt{\varepsilon}) \). These beams are based on same high frequency approximation as geometrical optics which has \(O(\varepsilon) \) accuracy.
- Numerical experiments suggests a better rate for odd order beams.
- For the Helmholtz case we have proved [Motamed, OR] that

\[|u(x) - u_{GB}(x)| \leq O(\varepsilon^\lceil K/2 \rceil) \]

for the Taylor expansion part of the error away from caustics. This gives \(O(\varepsilon) \) for first order beams.
The estimate

$$\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2})$$

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only $O(\sqrt{\varepsilon})$. These beams are based on same high frequency approximation as geometrical optics which has $O(\varepsilon)$ accuracy.
- Numerical experiments suggests a better rate for odd order beams
- For the Helmholtz case we have proved [Motamed, OR] that

$$|u(x) - u_{GB}(x)| \leq O(\varepsilon^{|K/2|})$$

for the Taylor expansion part of the error away from caustics. This gives $O(\varepsilon)$ for first order beams.

- More error cancellations coming in for odd order beams? (\Rightarrow no gain in using even order beams)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic

Consider the test case where

\[
\Phi(0, y) = -y_1 + y_2^2, \\
A(0, y) = e^{-10|y|^2}.
\]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic, convergence

Energy norm

\[\| u_k(0.25, \cdot) - u_F(0.25, \cdot) \|_E \]

\[\| u_k(0.75, \cdot) - u_F(0.75, \cdot) \|_E \]
Numerical examples
Cusp caustic, convergence

Max norm

\[\|u_k(0.25, \cdot) - u_F(0.25, \cdot)\|_{L^\infty} \]

\[\|u_k(0.75, \cdot) - u_F(0.75, \cdot)\|_{L^\infty} \]

- \(k=1 \)
- \(k=2 \)
- \(k=3 \)

Log-linear scale with values on the y-axis ranging from 10^{-3} to 10^{-1} and on the x-axis ranging from 1/1000 to 1/100.