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High frequency waves

Cauchy problem for scalar wave equation

Uy — c(x)2Au =0, (t,x) e RT x R,

U0, X) = AU, u(0.x) = L Bx)e ),

where c¢(x) (variable) smooth speed of propagation.
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High frequency waves

Cauchy problem for scalar wave equation

Uy — c(x)2Au =0, (t,x) e RT x R,

u(0,x) = A(X)ef(zﬁ(x)/ﬁ7 ur(0, X) = 78( )e gl x)/a

where c¢(x) (variable) smooth speed of propagation.

Solution u(x.y)

@ High frequency —
short wave length —
highly oscillatory solutions —
many gridpoints.
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High frequency waves

Cauchy problem for scalar wave equation

Uy — c(x)2Au =0, (t,x) e RT x R,

u(0, x) = A(x)e'*™)/e, u(0,x) = B( Yel?X)/=,

where c¢(x) (variable) smooth speed of propagation.

Solution u(x.y)

@ High frequency —
short wave length —
highly oscillatory solutions —
many gridpoints.

@ Direct numerical solution resolves wavelength:
#gridpoints ~ ¢~ at least = cost ~ ¢~ at least
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High frequency waves

Cauchy problem for scalar wave equation

Uy — c(x)2Au =0, (t,x) e RT x R,

u(0, x) = A(x)e'*™)/e, u(0,x) = B( Yel?X)/=,

where c¢(x) (variable) smooth speed of propagation.

Solution u(x.y)

@ High frequency —
short wave length —
highly oscillatory solutions —
many gridpoints.

@ Direct numerical solution resolves wavelength:
#gridpoints ~ ¢~ at least = cost ~ ¢~ at least

@ Often unrealistic approach for applications in e.g. optics,
electromagnetics, geophysics, acoustics, quantum mechanics, .. .
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High frequency material

Cauchy problem for scalar wave equation
uy — V- c(x)Vu =0, (t,x) € RT xR,
u(0, x) = A(x), u:(0, x) = B(x),
where ¢*(x) € R9< has variations on length scale ~ ¢.
The functions A(x) and B(x) are smooth (and independent of ¢).
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where ¢*(x) € R9< has variations on length scale ~ ¢.
The functions A(x) and B(x) are smooth (and independent of ¢).

@ Direct numerical solution resolves wavelength:
#gridpoints ~ ¢~ at least = cost ~ ¢~ at least
Prohibitively expensive when ¢ <« 1, particularly in higher
dimensions.
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High frequency material

Cauchy problem for scalar wave equation
uy — V- c(x)Vu =0, (t,x) € RT xR,
u(0, x) = A(x), u:(0, x) = B(x),
where ¢*(x) € R9< has variations on length scale ~ ¢.
The functions A(x) and B(x) are smooth (and independent of ¢).

@ Direct numerical solution resolves wavelength:
#gridpoints ~ ¢~ at least = cost ~ ¢ "' at least

Prohibitively expensive when ¢ <« 1, particularly in higher
dimensions.

@ Our approach: Heterogeneous Multiscale Method (HMM)
[E,Engquist,2001].

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013



High frequency material

Cauchy problem for scalar wave equation
uy — V- c(x)Vu =0, (t,x) € RT xR,
u(0, x) = A(x), u:(0, x) = B(x),
where ¢*(x) € R9< has variations on length scale ~ ¢.
The functions A(x) and B(x) are smooth (and independent of ¢).

@ Direct numerical solution resolves wavelength:
#gridpoints ~ ¢~ at least = cost ~ ¢ "' at least

Prohibitively expensive when ¢ <« 1, particularly in higher
dimensions.

@ Our approach: Heterogeneous Multiscale Method (HMM)
[E,Engquist,2001].

@ Solve small micro problems (localized in time and space) to probe
effective dynamics, which is approximated on coarse grid
(Ax > ¢). Method cost (essentially) independent of e.
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Geometrical optics

Wave equation

Solution u(x,y)

ug — c(x)?Au = 0.
Write solution on the form

u(t, x) = a(t, x, )e' /e,
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Geometrical optics
Wave equation

Solution u(x,y)

ug — c(x)?Au = 0.

Write solution on the form

u(t, x) = a(t, x, )e' /e,

(a) Amplitude a(x) (b) Phase ¢(x)

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 4/36



Geometrical optics

@ a, ¢ vary on a much coarser scale than u.
(And varies little with £.) Geometrical optics approximation
considers aand ¢ as ¢ — 0.
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Geometrical optics

@ a, ¢ vary on a much coarser scale than u.
(And varies little with £.) Geometrical optics approximation
considers aand ¢ as ¢ — 0.

@ Phase and amplitude satisfy eikonal and transport equations
Vo-Va A — oy _

2 2 2 _ -0
o7 —c(y)|Vel© =0, ar+c Nz - 501V 0
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Geometrical optics

@ a, ¢ vary on a much coarser scale than u.
(And varies little with £.) Geometrical optics approximation
considers aand ¢ as ¢ — 0.

@ Phase and amplitude satisfy eikonal and transport equations

Vo-Va cPAop— oy

2 _c(y)?|Vel? =0, ar+c + =0.
o7 —c(y) IVl t Vol 20Vl
@ Ray tracing: x(t), p(t) bicharacteristics of the eikonal equation,
ax 5 dp  Ve(x) B
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Geometrical optics

@ a, ¢ vary on a much coarser scale than u.
(And varies little with £.) Geometrical optics approximation
considers aand ¢ as ¢ — 0.

@ Phase and amplitude satisfy eikonal and transport equations

Vo-Va cPAop— oy

2 _c(y)?|Vel? =0, ar+c + =0.
o7 —c(y) IVl t Vol 20Vl
@ Ray tracing: x(t), p(t) bicharacteristics of the eikonal equation,
I e, 9P Vel _

@ Good accuracy for small e. Computational cost e-independent.
u(t,x) = a(t, x)etX/= L O(e).

(#DOF and cost independent of ¢)
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Geometrical optics

@ The ansatz _
u(t, x) = a(t, x)e' "/,

generally breaks down in finite time if valid at t = 0.
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Geometrical optics

@ The ansatz _
u(t, x) = a(t, x)e' "/,

generally breaks down in finite time if valid at t = 0.
@ Refraction of waves gives rise to multiple crossing waves

N
u(t,x) =" an(t, x)e/*n(tX)/e

n=1

= Several amplitude and phase functions.
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= Several amplitude and phase functions.
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Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 6/36



Geometrical optics

@ The ansatz _
u(t, x) = a(t, x)e""/e,

generally breaks down in finite time if valid at t = 0.

@ Refraction of waves gives rise to multiple crossing waves
N .
u(t,x) =" an(t, x)e/*n(tX)/e
n=1

= Several amplitude and phase functions.
@ Caustics appear at points of transition = concentration of rays.
@ Geometrical optics predicts infinite amplitude at caustics.
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Geometrical optics

@ The ansatz _
u(t, x) = a(t, x)e /e,
generally breaks down in finite time if valid at t = 0.
@ Refraction of waves gives rise to multiple crossing waves

N
u(t,x) =" an(t, x)e/*n(tX)/e
n=1

= Several amplitude and phase functions.
@ Caustics appear at points of transition = concentration of rays.
@ Geometrical optics predicts infinite amplitude at caustics.

@ Handling multiphase solutions tricky for numerical methods with
fixed grids.
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Concentration of rays.
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@ Approximate, localized, solutions to the wave
equation/Schrodinger with a Gaussian profile (width ~ /z).
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@ Approximate, localized, solutions to the wave
equation/Schrodinger with a Gaussian profile (width ~ /z).

@ Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes,
Kravtsov, ...], Quantum Mechanics,[Heller, Hagedorn, Herman, Kluk,
Kay, ...], Plasma Physics, [Pereverzev, Peeters, Maj, ...],
Mathematics [Ralston, Hérmander, .. .]
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CEUERIER R CEINE
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@ Approximate, localized, solutions to the wave
equation/Schrodinger with a Gaussian profile (width ~ /z).

@ Studied in e.g. Geophysics [Cerveny, Popov, Babich, Psencik, Klimes,
Kravtsov, ...], Quantum Mechanics,[Heller, Hagedorn, Herman, Kluk,
Kay, ...], Plasma Physics, [Pereverzev, Peeters, Maj, ...],
Mathematics [Ralston, Hérmander, .. .]

@ No breakdown at caustics.
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),

Alt,y)=alty —x(1),  o(t,y) =ty —x(1)).
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),
Alty)=a(t,y —x(1)),  o(ty)= oty —x(1)).

@ The phase ¢ will now have a positive imaginary part away from
the ray x(t).
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),
Alty)=a(t,y —x(1)),  o(ty)= oty —x(1)).

@ The phase ¢ will now have a positive imaginary part away from
the ray x(t).
e Imaginary part of ¢ ~ |y|2 = |v(t,y)| ~ e IV =*(OF/=,
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),

Alt,y) =alty —x(t)),  o(ty)=o(t,y — x(1)).
@ The phase ¢ will now have a positive imaginary part away from
the ray x(t).
o Imaginary part of ¢ ~ |y[2 = |v(t,y)| ~ e-V—x(OF/z,

e Gaussian with width /=
e Localized around x(t). (Moves along the space time ray.)
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),

Alt,y)=alty —x(1),  o(t,y) =ty —x(1)).

@ The phase ¢ will now have a positive imaginary part away from
the ray x(t).
o Imaginary part of ¢ ~ |y[2 = |v(t,y)| ~ e-V—x(OF/z,
e Gaussian with width /=
e Localized around x(t). (Moves along the space time ray.)
@ Phase ®(t, y) and amplitude A(t, y) approximated by polynomials
locally around x(t)
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Gaussian beams

@ Gaussian beams are of the same form as geometrical optics
solutions, _
v(t,y) = A(t,y)e" /e,

centered around a geometrical optics ray x(t),

Alt,y)=alty —x(1),  o(t,y) =ty —x(1)).

@ The phase ¢ will now have a positive imaginary part away from
the ray x(t).
o Imaginary part of ¢ ~ |y[2 = |v(t,y)| ~ e-V—x(OF/z,
e Gaussian with width /=
e Localized around x(t). (Moves along the space time ray.)
@ Phase ®(t, y) and amplitude A(t, y) approximated by polynomials
locally around x(t)
@ d(t,y) and A(t, y) solve eikonal and transport equation only upto
O(ly — x|™).
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First order beams

The simplest ("first order") Gaussian beams are of the form
¢(t7.y) = ¢(t7y - X(t))a

W
y

V(t.y) = ()
4(t.y) = do(t) +y - p(1) + 3y - M(D)y.

where
i.e. A(t,y) approximated to Oth order, and ®(t, y) to 2nd order.

IPP Garching, 2013 10/36
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First order beams
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The simplest ("first order") Gaussian beams are of the form

v(t.y) = (e’ ot y) = é(t.y — x(1)),
where ’
O(t,y) = do(t) +y - p(t) + 5y - M()y.
i.e. A(t,y) approximated to Oth order, and ®(t, y) to 2nd order.
=

We require that ®(t, y) solves eikonal to order O(|y — x[3) and A(t, )
solves transport equation to order O(|y — x|).
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First order beams

Let us thus require that

®F — c(y)? [V = O(ly — x(1)°),
Vo .-VA Cqu) — (D”
A= -

Ar+c
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First order beams

Let us thus require that
oF — c(y)? VO = O(ly — x(1)P),
Vo . VA C2A¢ — by .

= We obtain ODEs for ¢g, x, p, M, ag.

X(t) = c(x)?p, $o(t) =0,
p(t) = —Ve(x)/e(x),  M(t)=—-D— MB—B"M— MCM ,

ao(t) = 2 (—c()p - Ve(x) — o(x)°p - Mp+ c(x)2TH{M] ) ,

where B, C, D are matrix functions involving x, p and ¢(x).
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First order beams

Let us thus require that
oF — c(y)?|Ve? = Oy — x(t)°),
Vo . VA C2A¢ — Py

A+c Yol T 2079 A=O(ly — x(1)]),
= We obtain ODEs for ¢q, X, p, M, ag.
X(t) = c(x)?p, $o(t) =0,

p(t) = —Ve(x)/e(x),  M(t)=—-D— MB—B"M— MCM ,

% (—c(x)p -Ve(x) —e(x)%p - Mp + C(X)zTr[M]) ;

where B, C, D are matrix functions involving x, p and ¢(x).
e ODEs easy to solve numerically.
e Beams easy to evaluate:

. 1
v(t,y) = ao(t)e =WV gt y) = go(t) +y - p(t) + 5V M(b)y.
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First order beams

Let us thus require that

®F — c(y)? [V = O(ly — x(1)°),
Vo - VA Cqu)—q)”A:O

= We obtain ODEs for ¢q, x, p, M, ag.
X(t) = c(x)’p $o(t) =0,
p(t) = —Ve(x)/e(x),  M(t)=—-D—MB—B"M— MCM,
ao(t) = 2 (—c(x)p - Ve(x) - o(x)°p - Mp+ c(x)2TH{M] ) ,

= Asymptotic order of accuracy is

vie — c(y)?Av = O(%) : J
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Higher order beams

More generally, we can construct higher order beams. Let
v(t,y) = a(t,y — x(t)e?ty O/,
where, for order K beams,
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Higher order beams

More generally, we can construct higher order beams. Let
v(t,y) = a(t,y — x(t)e?ty O/,
where, for order K beams,

@ The phase is a Taylor polynomial of order K + 1,
K+1

o(t,y) = do(t) +y - p(t) +y - 2M W+
181=3

]
mm(t
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Higher order beams

More generally, we can construct higher order beams. Let
v(t,y) = a(t,y — x(t)e?ty O/,
where, for order K beams,
@ The phase is a Taylor polynomial of order K + 1,

K+1
1
ot y) = go(t) +y-p(t) +y - 2M v+ 2. goa(0y”.
|B81=3
@ Ais now a finite WKB expansion,
[K/2]—1
att,y)= Y. dalty)
j=0
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Higher order beams

More generally, we can construct higher order beams. Let
v(t,y) = a(t,y — x(t)e?ty O/,
where, for order K beams,
@ The phase is a Taylor polynomial of order K + 1,

K+1
1
ot y) = go(t) +y-p(t) +y - 2M v+ 2. goa(0y”.
|B81=3
@ Ais now a finite WKB expansion,
[K/2]—1
att,y)= Y. dalty)
j=0

@ Each amplitude term g; is a Taylor polynomial toorder K —2j — 1
K—2j—

Z@/ﬁ

1B31=0
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Higher order beams

We now require that
@ &(t,y) = ¢(t,y — x)) solves eikonal equation to order |y — x|K+2

@ g(t, y — x) solve higher order transport equations to order
ly —x|*%
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Higher order beams

We now require that
@ &(t,y) = ¢(t,y — x)) solves eikonal equation to order |y — x|K+2
@ gi(t, y — x) solve higher order transport equations to order
ly —x|"%
Again, this gives ODEs for all Taylor coefficients,

X(t) = c(x)’p o(t) =0,
p(t) = —Ve(x)/e(x),  M(t)=—-D—MB—-B"M— MCM ,
gs(t)=..., ds(t) = ...,
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Higher order beams

We now require that
@ &(t,y) = ¢(t,y — x)) solves eikonal equation to order |y — x|K+2

@ g(t, y — x) solve higher order transport equations to order
ly —x|*%

Again, this gives ODEs for all Taylor coefficients,

X(t) = c(x)’p o(t) =0,
p(t) = —Ve(x)/e(x),  M(t)=—-D—MB—-B"M— MCM ,
gs(t)=..., ds(t) = ...,

Asymptotic order of accuracy is

vie — c(y)2Av =0 <5K/2*1) : J
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Gaussian beams
Properties
N X

-
o(t,y) = do(t) +y - p(t) + 5y - M(t)y

W

v(t,y) = ap(t)ety—xM)/e,
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Gaussian beams
Properties
N X
- M(t

-
(t.y) = ¢o(t) +y-p(t) + 5y - M(t)y

(t,y) = ao(t)ety—xD)/=
o(t,0) = ¢o(t) is real valued

@ O(t, x(t) =

IPP Garching, 2013 14 /36
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Gaussian beams
Properties
N X
- M(t

-
(t.y) = ¢o(t) +y-p(t) + 5y - M(t)y

(t,y) = ap(t)e/*ty—x()/e
o(t,0) = ¢o(t) is real valued
@ If M(0) is symmetric and 3IM(0) is positive definite then this is true

@ O(t, x(t) =
for M(t) (which exists) for all t > 0

IPP Garching, 2013 14 /36
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CEUERIER R CEINE
Properties

i
%
W

. 1
v(t,y) = ap(t)e =XV gt y) = do(t) + y - p(t) + 5V - M(t)y

@ O(t,x(t)) = ¢(t,0) = ¢p(t) is real valued

@ If M(0) is symmetric and 3IM(0) is positive definite then this is true
for M(t) (which exists) for all ¢ > 0.

@ ay(t) exists everywhere (no blow-up at caustics)
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CEUERIER R CEINE
Properties

i
%
W

. 1
v(t,y) = ap(t)e =XV gt y) = do(t) + y - p(t) + 5V - M(t)y

@ O(t,x(t)) = ¢(t,0) = ¢p(t) is real valued

@ If M(0) is symmetric and 3IM(0) is positive definite then this is true
for M(t) (which exists) for all ¢ > 0.

@ ay(t) exists everywhere (no blow-up at caustics)

@ Shape of beam remains Gaussian
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CEUERIER R CEINE
Properties

U
%
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9

. 1
v(t,y) = ap(t)e =XV gt y) = do(t) + y - p(t) + 5V - M(t)y

@ O(t,x(t)) = ¢(t,0) = ¢p(t) is real valued

@ If M(0) is symmetric and 3IM(0) is positive definite then this is true
for M(t) (which exists) for all ¢ > 0.

@ ay(t) exists everywhere (no blow-up at caustics)

@ Shape of beam remains Gaussian

@ For high order need cutoff in a neighborhood of central ray to
avoid spurious growth.

v(t,y) = a(t,y — x(1))e" Xy — x(t))

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 14/36



Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams
Let v(t, y; z) be a beam starting from the point y = z and define

Uss(t,y) = 3 / v(t,y: 2)dz
Ko

(n—dimension, Ky — compact set)
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Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams.
Let v(t, y; z) be a beam starting from the point y = z and define

UGB(t7 .y) = g_g /

ao(t; z)eé[cpo(t;z)+(y—x(t;z))-p(t;z)+%(y—x(t;z)~M(t;z)(y—x(t;z)):
Ko

(n—dimension, Ky — compact set)
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Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams.
Let v(t, y; z) be a beam starting from the point y = z and define

UGB(t7 .y) = g_g /

ao(t; Z)eé[cpo(t;z)+(y—x(t;z))-p(t;z)+%(y—x(t;z)~M(t;z)(y—x(t;z))'
Ko

(n—dimension, Ky — compact set)

@ By linearity of the wave equation equation a sum of solutions is
also a solution.
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Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams
Let v(t, y; z) be a beam starting from the point y = z and define

ugs(t,y) = 5—'27/ ao(t; Z)eé[¢0(t;z)+(y—x(t;z))-p(t;z)+%(y—x(t;z)~M(t;z)(y—x(t;z)):
Ko

(n—dimension, Ky — compact set)

@ By linearity of the wave equation equation a sum of solutions is
also a solution.

@ ugg(t, y) is an asymptotic solution with initial data ugg(0, y).
Sufficient to describe e.g. WKB data: 3 K-th order beams s.t

HA e0/e _ g0, .)HE — 0K/,
[Tanushev, 2007].
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Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams
Let v(t, y; z) be a beam starting from the point y = z and define

ugs(t,y) = e~ 3 / ao(t; Z)eé[¢0(t;z)+(y—x(t;z))-p(t;z)+%(y—x(t;z)~M(t;z)(y—x(t;z)):
Ko

(n—dimension, Ky — compact set)

@ By linearity of the wave equation equation a sum of solutions is
also a solution.

@ ugg(t, y) is an asymptotic solution with initial data ugg(0, y).
Sufficient to describe e.g. WKB data: 3 K-th order beams s.t
|0 — ugg(0, )| = O(=2),
[Tanushev, 2007].

@ Prefactor normalizes beams appropriately, ||ugs||e =

o(1).
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Superpositions of Gaussian beams

More general phase space superposition:

Let v(t, y; z, p) be a beam starting from the point y = z with
momentum p and define

Uss(t,y) = ¢ / v(t,y: 2, p)dzap.
Ko
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Superpositions of Gaussian beams

More general phase space superposition:

Let v(t, y; z, p) be a beam starting from the point y = z with
momentum p and define

Uss(t,y) = ¢ / v(t,y: 2, p)dzap.
Ko

ugs(t, y) is an asymptotic solution with initial data
ues(0.) = =" [ W(0.y:2.p)dzcp.
Ko

Can describe more general data. (C.f. FBI transform.)
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Numerical methods

@ Approximate superposition integral by sum (trapezoidal rule)

ugs(t,y) = £ 2 / v(t,y; z)dz ~ e 2 Z v(t,y; Zj)AZn.
Ko ;
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Numerical methods

@ Approximate superposition integral by sum (trapezoidal rule)

ugs(t,y) _6[21/ v(t,y; Z)dZ%{f*gZV(t’y;zj)Azn.
Ko ;
@ Lagrangian methods — Solve ODEs Vz; with standard methods.

Similar to ray tracing but with all the additional Taylor coefficients

computed along the rays
(M, aj g, ¢g, ...) [Hill, Klimes, ...]
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Numerical methods

@ Approximate superposition integral by sum (trapezoidal rule)

wes(t.y) == % [ vityiziz e E Y vityiz)az
KO f

@ Lagrangian methods — Solve ODEs Vz; with standard methods.
Similar to ray tracing but with all the additional Taylor coefficients
computed along the rays
(M, a; 3, ¢g, -..) [Hill, Klimes, ...]

@ Eulerian methods — obtain parameters from solving PDEs on fixed
grids [Leung, Qian, Burridge,07]], [Jin, Wu, Yang,08], [Jin, Wu,
Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10],...
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Numerical methods

@ Approximate superposition integral by sum (trapezoidal rule)

ves(t.y) == | Wtyiz)ozmeE S ultyiz)az"
KO f

@ Lagrangian methods — Solve ODEs Vz; with standard methods.
Similar to ray tracing but with all the additional Taylor coefficients
computed along the rays
(M, a; 3, ¢g, -..) [Hill, Klimes, ...]

@ Eulerian methods — obtain parameters from solving PDEs on fixed
grids [Leung, Qian, Burridge,07]], [Jin, Wu, Yang,08], [Jin, Wu,
Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10],...

@ Wavefront methods — solve for parameters on a wave front
[Motamed, OR,09]
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Numerical methods

ugs(t,y) =2 /

v(t,y,z)dz~ e~ ng Ly z)A
Ko ;

Numerical issues

@ Cost ~ number of beams since each beam is O(1).
For accuracy need Az ~ /e ~ width of beams.
= cost ~ O(e~"/?)
C.f. direct solution of wave equations, at least O(¢~ ("))
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Numerical methods

ugs(t,y) = ag/ v(t,y,z)dz~ e~ ng Ly z)A
Ko ;

Numerical issues

@ Cost ~ number of beams since each beam is O(1).
For accuracy need Az ~ /e ~ width of beams.
= cost ~ O(e~"/?)
C.f. direct solution of wave equations, at least O(¢~ ("))
@ For phase space superposition would get ~ O(¢~") but can often
be improved (e.g. support in p ~ /e for WKB data)
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Numerical methods

ugs(t,y) = ag/ v(t,y,z)dz~ e~ ng Ly z)A
Ko ;

Numerical issues

@ Cost ~ number of beams since each beam is O(1).
For accuracy need Az ~ /e ~ width of beams.
= cost ~ O(e~"/?)
C.f. direct solution of wave equations, at least O(¢~ ("))
@ For phase space superposition would get ~ O(¢~") but can often
be improved (e.g. support in p ~ /e for WKB data)
@ Spreading of beams
Wide beams =- large Taylor approximation errors
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Numerical methods

ugs(t,y) = ag/ v(t,y,z)dz~ e~ ng Ly z)A
Ko ;

Numerical issues

@ Cost ~ number of beams since each beam is O(1).
For accuracy need Az ~ /e ~ width of beams.
= cost ~ O(e~"/?)
C.f. direct solution of wave equations, at least O(¢~("+1))
@ For phase space superposition would get ~ O(¢~") but can often
be improved (e.g. support in p ~ /e for WKB data)
@ Spreading of beams
Wide beams = large Taylor approximation errors
@ Initial data approximation
Many degrees of freedom. Can have huge impact on accuracy at
later times.

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 18/36



Approximation errors

Let
O := 9y + c(y)?A.

Suppose u is exact solution of wave equation and & is the Gaussian
beam approximation

Ou=0, Ob=0(k2T).

What is the norm errorin 4, i.e. ||u — U||?
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Approximation errors

Let
O := 9y + c(y)?A.

Suppose u is exact solution of wave equation and & is the Gaussian
beam approximation

Ou=0, Ob=0(k2T).
What is the norm errorin 4, i.e. ||u — U||?

Use e-scaled energy norm

82 _
oz =5 [ llPely) ® + [Vuldy.
Rn
This is O(1) for WKB type initial data,
u(0,x) = A(x)e™/= = ||u(0,-)||e = O(1).
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Approximation errors

Use well-posedness (stability) estimate for wave equation solutions w:

Iw(t,-)lle < lw(0,-)lle +eC(T) sup. [Ew(t, e, 0<t<T.
te[0,T]
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Approximation errors

Use well-posedness (stability) estimate for wave equation solutions w:

[w(t,)lle < Iw(0,-)lle +eC(T) Sup 1Bw(t, )z, 0<t<T.
Since, COu = 0 and by linearity
O[g—u] =

Hence, assuming u(0, x) = (0, x),

|a(t,-) — u(t,)l[e < eC(T) S[l;p]HDU( N, 0<t<T.
te

Error in & ~ how well it satisfies equation, plus one order in ¢
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Approximation Errors Single Gaussian Beam

By earlier construction
Olga(t, x) = O(X/2~1).

and

|o(t,-) = u(t,-)l[e < eC(T) sup [|0u(t, )|z,  0<t<T.
tel0,T]
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Approximation Errors Single Gaussian Beam

By earlier construction
Olga(t, x) = O(X/2~1).

and

|o(t,-) = u(t,-)l[e < eC(T) sup [|0u(t, )|z,  0<t<T.
tel0,T]

Hence, after appropriate normalization (so ||u||g = 1) and assuming
zero initial data error, [Ralston, 82]

sup ||&(t,-) — u(t,)||e < O("/?).
te[0,T]

Estimate is sharp.
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Approximation Errors Superpositions

Norm estimates of ||u — ugg|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,...]

Need to check how well ugg satisfies equation

Ougs = Ontigs + c(y)?Dugs,  Ues(t,y) =< % /K v(t,y: 2)dz.
0
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Approximation Errors Superpositions

Norm estimates of ||u — ugg|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,...]

Need to check how well ugg satisfies equation

Ougs = Ontigs + c(y)?Dugs,  Ues(t,y) =< % /K v(t,y: 2)dz.
0

@ By linearity,
Ougs = 5_”/2/ Ov(t,y; z)dz.
Ko
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Approximation Errors Superpositions

Norm estimates of ||u — ugg|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,...]

Need to check how well ugg satisfies equation
Cugs = Onus + oy PAuca,  uea(t.y) == [ v(tyiz)at.
0
@ By linearity and simple estimate,

Olugs| < =2 / Ov(t, y; 2)|dz.
Ko
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Approximation Errors Superpositions

Norm estimates of ||u — ugg|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,...]

Need to check how well ugg satisfies equation

Ougs = Ontigs + c(y)?Dugs,  Ues(t,y) =< % /K v(t,y: 2)dz.
0

@ By linearity and simple estimate,

Oues| <=2 | 0wt yi2)|dz.
Ko
@ After scaling and Cauchy—Schwarz,

1Buas()Il5 < Cs‘”/K 1TV(t, y: 2)|[Bdz < CeMeK—2+n/2,
0
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Approximation Errors Superpositions

Norm estimates of ||u — ugg|| only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, Lu, Yang,...]

Need to check how well ugg satisfies equation

Ougs = Ontigs + c(y)?Dugs,  Ues(t,y) =< % /K v(t,y: 2)dz.
0

@ By linearity and simple estimate,
Oues| <=2 | 0wt yi2)|dz.
Ko
@ After scaling and Cauchy—Schwarz,

1Buas()Il5 < Cs‘”/K IOV(t, y; 2)|2dz < CeneK—2+n/2,
0

@ Gives error estimate for ugg

|u — ugsl|e < eC||Quggl|z < CK72=1/4,
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Approximation errors superpositions

@ Basic estimate
llu(t,) — uas(t,)l|e < O(K/2"/4) .

is not sharp. E.g. it does not predict convergence for first order
beams in 2D.
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Approximation errors superpositions

@ Basic estimate
llu(t,) — uas(t,)l|e < O(K/2"/4) .

is not sharp. E.g. it does not predict convergence for first order
beams in 2D.

@ Problem: The step

Dugs| < 2 / Ov(t, y: 2)|dz
Ko

ignores cancellations between neighbouring beams. Very bad
except at caustics where beams interfere constructively.
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Approximation errors superpositions

@ Basic estimate
llu(t,) — uas(t,)l|e < O(K/2"/4) .

is not sharp. E.g. it does not predict convergence for first order
beams in 2D.

@ Problem: The step
Cues| <=2 [ [Ov(t.y: 2oz
Ko
ignores cancellations between neighbouring beams. Very bad

except at caustics where beams interfere constructively.
@ Gives a dependence on dimension n in estimate.
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

llu(t,-) — ugs(t, )lle < O("/?).

For the Schrédinger equation,

llu(t, ) — ugs(t, Iz < O("/?) .
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

llu(t,-) — ugs(t, )lle < O("/?).

For the Schrédinger equation,

llu(t, ) — ugs(t, Iz < O("/?) .

@ Superposition in physical space. Initial data approximated on a
submanifold of phase space (WKB data).
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

llu(t,-) — ugs(t, )lle < O("/?).

For the Schrédinger equation,

llu(t, ) — ugs(t, Iz < O("/?) .

@ Superposition in physical space. Initial data approximated on a
submanifold of phase space (WKB data).

@ Convergence of all beams independent of dimension and
presence of caustics.
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

llu(t,-) — ugs(t, )lle < O("/?).

For the Schrédinger equation,

llu(t, ) — ugs(t, Iz < O("/?) .

@ Superposition in physical space. Initial data approximated on a
submanifold of phase space (WKB data).

@ Convergence of all beams independent of dimension and
presence of caustics.

@ Result also for general scalar, strictly hyperbolic m-th order PDEs.
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Error estimate

Theorem (Liu, Tanushev, O.R.,2010)
For the wave equation,

llu(t,-) — ugs(t,-)||e < O("/?).
For the Schrédinger equation,

llu(t, ) — ugs(t, Iz < O("/?) .

@ Superposition in physical space. Initial data approximated on a
submanifold of phase space (WKB data).

@ Convergence of all beams independent of dimension and
presence of caustics.

@ Result also for general scalar, strictly hyperbolic m-th order PDEs.
@ Cf. [Bougacha, Akian, Alexandre, 2009], [Rousse, Swart, 2009]
and [Lu, Yang, 2011] for other settings.
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Gaussian beams for Helmholtz

For time-harmonic waves consider Helmholtz equation
Au+ (ioe™'+e72)nPu=g, xeRY

where n(x) = 1/¢(x), a=damping and g supported on a co-dimension
one manifold. (Ex. g = go(X2)d(x1)/¢.)
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For time-harmonic waves consider Helmholtz equation
Au+ (ioe™'+e72)nPu=g, xeRY

where n(x) = 1/¢(x), a=damping and g supported on a co-dimension
one manifold. (Ex. g = go(X2)d(x1)/¢.)

@ "Blobs" = "Fat rays" localized around geometrical optics ray
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Gaussian beams for Helmholtz

For time-harmonic waves consider Helmholtz equation
Au+ (iae '+ 2)nPu=g, xeRY

where n(x) = 1/¢(x), a=damping and g supported on a co-dimension
one manifold. (Ex. g = go(X2)d(x1)/¢.)

@ "Blobs" = "Fat rays" localized around geometrical optics ray

@ To leading order gaussian transversely to ray
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Gaussian beams for Helmholtz

@ Same ansatz,
V = a(sjy _ X(s))ei(b(sryfx(s))/s’

centered around a geometrical optics ray x(s) but s not time.
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Gaussian beams for Helmholtz

@ Same ansatz,
V = a(sjy _ X(s))ei(b(sryfx(s))/s’

centered around a geometrical optics ray x(s) but s not time.
@ First order beams are of the form

6= 0o(s) +y pls) + 3y M(s)y,  a=a(s)

i.e. a approximated to Oth order, and ¢ to 2nd order.
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@ Same ansatz,
V = a(sjy _ X(s))ei(b(sryfx(s))/s’

centered around a geometrical optics ray x(s) but s not time.
@ First order beams are of the form

6= 0o(s) +y pls) + 3y M(s)y,  a=a(s)

i.e. a approximated to Oth order, and ¢ to 2nd order.
@ Similar ODEs for ag, X, p, M, ¢ as in the time-dependent case.
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Gaussian beams for Helmholtz

@ Same ansatz,
V = a(sjy _ X(s))ei(b(sryfx(s))/s’

centered around a geometrical optics ray x(s) but s not time.
@ First order beams are of the form

6= 0o(s) +y pls) + 3y M(s)y,  a=a(s)

i.e. a approximated to Oth order, and ¢ to 2nd order.
@ Similar ODEs for ag, X, p, M, ¢ as in the time-dependent case.

@ Similar properties as in time-dependent case:

e Phase ¢ evaluated on ray = ¢q(s) is real valued

e If M(0) is symmetric and SM(0) is positive definite then this is true
for M(s) (which exists) for all s > 0.

e ay(s) exists everywhere (no blow-up at caustics)
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Gaussian beams for Helmholtz

Extension off ray

X(s*)

@ How to evaluate "(s, y — x(s))" in expression for beam?
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Gaussian beams for Helmholtz

Extension off ray

v(y) = /\/
v(y)

* _ * ip(s*,y—x(s™))/e y
a(s 4 X(S ))e ’ x(s)

s = s'(y) " ot

@ How to evaluate "(s, y — x(s))" in expression for beam?
@ No distinguished "time" variable = Extend beam by Taylor

expansion transversely to ray:
Let s* = s*(y) such that x(s*) is closest point on ray to y.
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Gaussian beams for Helmholtz
Extension off ray

v(y) = /\/
v(y)

a(s*,y — x(s*))gs Yy x(sT)/e ' )
“oly (), : —
s*(y)

@ How to evaluate "(s, y — x(s))" in expression for beam?
@ No distinguished "time" variable = Extend beam by Taylor

expansion transversely to ray:
Let s* = s*(y) such that x(s*) is closest point on ray to y.

@ Only well-defined close enough to ray = Cutoff o(y) needed also
for first order beams (size n)
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Gaussian beams for Helmholtz
Source

Helmholtz with source on £ = {y : p(y) = 0}.

Au+ (iae™ "+ e72)nPu = %g(y)é(p(y))-

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 28/36



Gaussian beams for Helmholtz
Source

Helmholtz with source on £ = {y : p(y) = 0}.

Au+ (iae™ "+ e72)nPu = %g(y)é(p(y))-

@ Beams shoot out orthogonally in each direction from X
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Gaussian beams for Helmholtz
Source

Helmholtz with source on £ = {y : p(y) = 0}.

Au+ (iae™ "+ e72)nPu = %g(y)é(p(y))-

@ Beams shoot out orthogonally in each direction from X
@ Gives beams v*(y), with v (y) = 0 when p(y) < 0 etc.
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Gaussian beams for Helmholtz
Source

Helmholtz with source on £ = {y : p(y) = 0}.

Lu=: Au+ (iae™" + e ?)nPu = %g(y)é(p(y)).

@ Beams shoot out orthogonally in each direction from X

@ Gives beams v*(y), with v (y) = 0 when p(y) < 0 etc.

@ Notethat vt = v~ on X, but Vo™ = —V¢~ so that
L(vt +v~) ~ d(p(y))+ smooth part.
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Gaussian beams for Helmholtz
Superposition

Lu=: Au+ (iae™!

— Lawsely)).

9

@ Let v*(y; z) be the beams starting from z ¢ ¥ and define
superposition

Ugs(y) = ¢ 7" /z VH(y:2) + v (y: 2)]dA; (1)
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Gaussian beams for Helmholtz
Superposition

Lu=: Au+ (iae™!

— Lawsely)).

9

@ Let v*(y; z) be the beams starting from z ¢ ¥ and define
superposition

vas(y) =% [ vHyiz)+ v (vi2)loA: (1)
@ Choose initial data for beam v*(z; z) such that

Luaa(y) ~ ~8()(p(y) + fas

with g ~ g.

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 29/36



Error estimate
Kth order beams, Helmholtz case

Theorem (Liu, Ralston, Tanushev, O.R., 2013)

Assume
@ Smooth, compactly supported source g(x)
@ Index of refraction n(x) smooth and constant for |x| > R
@ No trapped rays: 3L s.t. |x(xL)| > 2R if |x(0)| < R, |p(0)| = n(x(0))
@ No initial data error g = g.

Then with C independent of ¢ and «,

U — ugsl|i2(x|<m) < Cek/2,
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@ Index of refraction n(x) smooth and constant for |x| > R
@ No trapped rays: 3L s.t. |x(xL)| > 2R if |x(0)| < R, |p(0)| = n(x(0))
@ No initial data error g = g.

Then with C independent of ¢ and «,

U — ugsllz(x<m) < Ceh/,

@ Superposition in physical space.
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Error estimate
Kth order beams, Helmholtz case

Theorem (Liu, Ralston, Tanushev, O.R., 2013)

Assume
@ Smooth, compactly supported source g(x)
@ Index of refraction n(x) smooth and constant for |x| > R
@ No trapped rays: 3L s.t. |x(xL)| > 2R if |x(0)| < R, |p(0)| = n(x(0))
@ No initial data error g = g.

Then with C independent of ¢ and «,

U — ugsllz(x<m) < Ceh/,

@ Superposition in physical space.
@ Convergence of all beams independent of dimension and
presence of caustics.
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Sketch of proof, wave equation

@ Use energy estimate

luas(t,-) — u(t,-)lle < [luas(0,-) — u(0, )| + Ce sup. 1Buas(t, )2,
tefo,
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Sketch of proof, wave equation

@ Use energy estimate

luas(t,) — u(t,")lle < llugs(0,-) — u(0, )| + Cstsllgpn Buas(t, )l 2,
€l0,
@ The residual is of the form

J
Ougs(t,y) = /2793 " " TF[f](t y) + O(™)
j=1

where r; > 0, J finite and f; € L? (all independent of ¢).
Tf? : 12 — [? belongs to a class of oscillatory integral operators.
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Sketch of proof, wave equation

@ Use energy estimate
llues(t, ) — u(t,-)lle < llues(0,-) — u(0,-)|le + Cstsllgpn [Bues(t, )i,
€lo,
@ The residual is of the form
J
Ougs(t,y) = eX/#79 2507]5[6'](1‘7 y)+0(E™),

j=1

where r; > 0, J finite and f; € L? (all independent of ¢).
Tf? : 12 — [? belongs to a class of oscillatory integral operators.

@ Together we get (if initial data exact)

lugs(t,-) — u(t,-)[[e < C(T K/ZZEr'HTEHLZ Ifillz + O(™)
j=1
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Sketch of proof, cont.

We have

lugs(t,) — u(t,-)l[e < C(T K/ZZHTEHBJFO( )
Jj=1

where, in its simplest form,

+|o

TWl(ty) =<2 / w(z2)(y — x(t; 2)) ety —x(t2)i2)/2 gz,
Ko

for some multi-index «, Gaussian beam phase ¢ and geometrical
optics rays x(t; z) with x(0; z) = z.
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Sketch of proof, cont.

We have

lugs(t,) — u(t,-)l[e < C(T K/ZZHTEHBJFO( )
Jj=1

where, in its simplest form,

+|o

TWl(ty) =<2 / w(z2)(y — x(t; 2)) ety —x(t2)i2)/2 gz,
Ko

for some multi-index «, Gaussian beam phase ¢ and geometrical
optics rays x(t; z) with x(0; z) = z.

Result follows if we prove that 7 is bounded in L? independent of ¢,
IT*]z < C.

This is the key estimate of our proof.
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Sketch of proof, cont.

Estimate of ||7¢||,2, where

_ ntla|

Tewi(t,y) ==e 2 / w(Z)(y — x(t; 2))* ety —x(62)/2 gz
Ko

@ Main difficulty: no globally invertible map x(0; z) = z — x(t; 2)
because of caustics.
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Sketch of proof, cont.

Estimate of ||7¢||,2, where

_ ntla|

Tewi(t,y) ==e 2 / w(Z)(y — x(t; 2))* ety —x(62)/2 gz
Ko

@ Main difficulty: no globally invertible map x(0; z) = z — x(t; 2)
because of caustics.

@ Mapping (x(0; z), p(0; 2)) — (x(t; z), p(t; ) is however globally
invertible and smooth. Gives the "non-squeezing" property,

cilz = 2| < Ip(t; 2) — p(t; 2)| + [x(t: 2) = x(t; 2)| < c2|lz = 2] .
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Sketch of proof, cont.

Estimate of ||7¢||,2, where

_ ntla|

Tewi(t,y) ==e 2 / w(Z)(y — x(t; 2))* ety —x(62)/2 gz
Ko

@ Main difficulty: no globally invertible map x(0; z) = z — x(t; 2)
because of caustics.

@ Mapping (x(0; z), p(0; 2)) — (x(t; z), p(t; ) is however globally
invertible and smooth. Gives the "non-squeezing" property,
cilz—Z'| < |p(t;2) — p(t; 2)| + x(t 2) — x(t; 2)| < oz — 2] .

@ Allows us to use stationary phase arguments close to caustics,
and carefully control cancellations of oscillations there (similar to
[Swart,Rousse], [Bougacha, Akian, Alexandre]).
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Approximation errors
Remarks

The estimate
l|u(t, ) — ugs(t, )l |e < O("/?)

is sharp for individual beams (relative error). But for superpositions?
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Approximation errors
Remarks

The estimate
llu(t, ) — ugs(t,)lle < O("/?)
is sharp for individual beams (relative error). But for superpositions?

@ Predicts convergence rate of first order beam to be only O(/¢).
These beams are based on same high frequency approximation
as geometrical optics which has O(e) accuracy.
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These beams are based on same high frequency approximation
as geometrical optics which has O(e) accuracy.

@ Numerical experiments suggests a better rate for odd order beams
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Approximation errors
Remarks

The estimate
llu(t, ) — ugs(t,)lle < O("/?)
is sharp for individual beams (relative error). But for superpositions?

@ Predicts convergence rate of first order beam to be only O(/¢).
These beams are based on same high frequency approximation
as geometrical optics which has O(e) accuracy.

@ Numerical experiments suggests a better rate for odd order beams
@ For the Helmholtz case we have proved [Motamed, OR] that

|u(x) — ugg(y| < O(T*/2T)

for the Taylor expansion part of the error away from caustics. This
gives O(e) for first order beams.
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Approximation errors
Remarks

The estimate
llu(t, ) — ugs(t,)lle < O("/?)
is sharp for individual beams (relative error). But for superpositions?

@ Predicts convergence rate of first order beam to be only O(/¢).
These beams are based on same high frequency approximation
as geometrical optics which has O(e) accuracy.

@ Numerical experiments suggests a better rate for odd order beams
@ For the Helmholtz case we have proved [Motamed, OR] that

|u(x) — ugg(y| < O(T*/2T)

for the Taylor expansion part of the error away from caustics. This
gives O(e) for first order beams.

@ More error cancellations coming in for odd order beams?
(= no gain in using even order beams)
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Numerical examples
Cusp caustic

Consider the test case

where 1 | o
®(0,y) = —y1 + ¥2,
A0, y) = e 1.
@ Cusp caustic at of
t = 05 0.2+
@ Two fold caustics at 04
t>05 o8l
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Numerical examples
Cusp caustic

Consider the test case

where 1 | 102
‘D(O,}’):—Jﬁ +Y227 i
A(o7y) — 6710"‘/'2. 0:4—
@ Cusp caustic at of
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Numerical examples
Cusp caustic

Consider the test case

where 1 | o4
®(0,y) = —y1 + ¥3,
A0, y) = e 1.
@ Cusp caustic at o
t = 05 0.2+
@ Two fold caustics at 04
t>05 o8l

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 35/36



Numerical examples
Cusp caustic

Consider the test case

where 1 | 03
®(0,y) = —y1 + ¥2,
A0, y) = e 1O,
@ Cusp caustic at ° =
t=05 o2)
@ Two fold caustics at 04
t>05 o8l

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 35/36



Numerical examples

Cusp caustic

Consider the test case

where 1 | o8
®(0,y) = —y1 + ¥2,
A0, y) = e 1O,
@ Cusp caustic at of
t=0.5 o2r
@ Two fold caustics at 04
t>05 o8l

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 35/36



Numerical examples
Cusp caustic

Consider the test case

where 1 | o7
Cb(o,y) = —W _|_yé27 08f
A0, y) = e 1.
@ Cusp caustic at or {(>>»
t = 05 0.2+
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Numerical examples
Cusp caustic

Consider the test case

where 1 | o
®(0,y) = —y1 + ¥z,
A0, y) = e 1O,

0.2+

o
T

(=

@ Cusp caustic at

t=0.5 o2r
@ Two fold caustics at 04
t>05 o8l

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 35/36



Numerical examples
Cusp caustic

Consider the test case

where 1 | —
®(0,y) = —y1 + ¥2,
A0, y) = e 1O,
@ Cusp caustic at of
t=0.5 o2r
@ Two fold caustics at 04
t>05 o8l

Olof Runborg (KTH) Gaussian Beam Approximation IPP Garching, 2013 35/36



Numerical examples
Cusp caustic

Consider the test case

where 1 | =t
®(0,y) = —y1 + ¥2,
A0, y) = e 1O,
@ Cusp caustic at of
t = 05 0.2+
@ Two fold caustics at 04
t>05 o8l
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Numerical examples

Cusp caustic, convergence

Energy norm

11U (0.25,)-uc(0.25, )l l1u,(0.75,)-u(0.75,)lI
10— ;

e TR |

10 D ,:

1/1000 1/100 1/1000 1/100
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Numerical examples

Cusp caustic, convergence

Max norm

llu,(0.25,-)-u(0.25,)l, - 1y, (0.75,)-u(0.75,)Il -

k=1
107 k=2
-~ — —k=3]

10~ R g _

/ 103} 4. AR

1/1000 1/100 1/1000 1100
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