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The equations

No magnetisation (µ = µ0).
Maxwell equations with a linear current derive from the
linearization µ0|H| � |B0| of the Vlasov-Maxwell system (for
electrons) around a strong magnetic field B0 :

−ε0∂tE +∇∧ H = −qeNe(x)ue ,
µ0∂tH +∇∧ E = 0,
me∂tue = −qe(E + B0(x) ∧ ue)−����νmeue .

Or, writing J = −qeNe(x)ue ,
ε0∂tE = ∇∧ H − J,
µ0∂tH = −∇ ∧ E ,
∂tJ = ε0ω

2
pE + ωcb ∧ J

with ωp(x) =
√

q2
eNe(x)
mε0

, ωc(x) = qe |B0(x)|
me

and b(x) = − B0(x)
|B0(x)| .
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Direct simulation of reflectometry configuration

The domain is a parallepiped (≈ 1500 cells in x direction) with
an antenna on the side : pulsation ω

• Cut-off : in O mode (TM), waves propagate if ω ≥ ωp(x).
• Cyclotron resonance : ω = ωc

• Hybrid resonance : ω2 = ωp(x)2 + ω2
c
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”Standard” scheme of Xu-Yuan (2006)

Based on the Yee scheme for the (E ,H) field : general form is
ε0
∆t (En+1 − En) = RHn+ 1

2 − Jn+ 1
2

µ0
∆t (Hn+ 3

2 − Hn+ 1
2 ) = −RtEn+1

1
∆t (Jn+ 3

2 − Jn+ 1
2 ) = ε0ω

2
pE

n+1 + ωcb ∧ 1
2 (Jn+ 3

2 + Jn+ 1
2 ).

→ Need to specify the operator “∧h” on the Yee grid
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X-mode equations

X-mode=Transverse electric (O-mode not discussed in this
talk).



−ε0∂tEx + ∂yHz = Jx , Jx = eNeux ,
ε0∂tEy − ∂xHz = Jy , Jy = eNeuy ,

µ0∂tHz + ∂xEy − ∂yEx = 0,

me∂tux = eEx + euyB
0
z ,

me∂tuy = eEy − euxB
0
z .

Call VLC external
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Main difficulty

In fusion plasmas, Ne(x) has huge fluctuations along the main axis
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Negative density (num. or measurement artifact) induces
automatically an instability, as well as strong spatial gradient at the
plasma edge (phys.) or inside the plasma (phys.).
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Example of unstability (for large times)

Magnetic field 20 log10 |Hz | (where |Hz | = ‖Hz‖L∞) vs. time
step and level of fluctuations

Expertise from F. Da Silva and S. Heuraux.
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Some references

• Xu-Yuan, FDTD Formulations for Scattering From 3-D Anisotropic
Magnetized Plasma Objects, IEEE-2006
• Bohner, Simulation of Microwave Propagation in a Fusion Plasma,
Diploma Thesis, MaxPlanck, 2011
• An unconditionally stable ( ?) time-domain discretization on cartesian
meshes for the simulation of nonuniform magnetized cold plasma,
JCP-2012, Tierens-Zutter
• Yu-Simpson, An E-J Collocated 3-D FDTD Model of Electromagnetic
Wave Propagation in Magnetized Cold Plasma, Ieee Transations on
antennas and propagation, 58-2, 2010
• Smithe, Finite-difference time-domain simulation of fusion plasmas at
radiofrequency time scales, Physics of plasmas, 2007

• da Silva-Heuraux-Ribeiro-Scott, (2013). Development of a 2D full-wave
JE-FDTD Maxwell X-mode code for reflectometry simulation (pp. 16).
Presented at the 9th International Reflectometry Workshop.
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Energy conservation at the continuous level

For simplicity : constant density profile Ne(x, t) = Ne(x).

Inside the computational domain (no boundaries
assumed), the total energy is conserved in time,

d

dt

∫
Ω

(
ε0|E |2

2
+
|H|2

2µ0
+

meNe(x)|ue |2

2

)
dv = 0.

Using ”normalized” variables Ê := 1
cE , Ĥ := µ0H and

Ĵ := 1
ωpcε0

J, we have

d

dt

∫ (
|Ê |2

2
+
|Ĥ|2

2
+
|Ĵ|2

2

)
dv = 0.
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Classical stability analysis for the Yee scheme

With normalized variables, the Yee scheme (J = 0) reads
1

∆t (Ên+1 − Ên) = cRĤn+ 1
2

1
∆t (Ĥn+ 1

2 − Ĥn− 1
2 ) = −cRt Ên

where

{
Ê := 1

cE

Ĥ := µ0H.

In particular, the energy Ên := ‖Ên‖2
h + ‖Ĥn− 1

2 ‖2
h satisfies

Ên+1−Ên = c∆t
(
〈RĤn+ 1

2 , Ên+1+��̂E
n〉−〈Rt Ên,��

�
Ĥn+ 1

2 +Ĥn− 1
2 〉
)

hence En := Ên − c∆t〈Ên,RĤn− 1
2 〉 is constant. Moreover,

|〈Ên,RĤn− 1
2 〉| ≤ 1

2‖R‖Ê
n =⇒ Ên(1− c∆t

2 ‖R‖) ≤ E
n

=⇒ Stability in the energy norm : for c∆t < 2/‖R‖ = h/
√

3

Munich: Pereverzev legacy 13/10/2013 p. 12 / 30



Motivation

Stable
schemes

Explicit
schemes

Numerical
results and
perspectives

Stability analysis for an abstract Yee+J scheme

With Ê , Ĥ and Ĵ := 1
ωpcε0

J, the “abstract” Yee+J scheme is
1

∆t (Ên+1 − Ên) = cRĤn+ 1
2 − ωp Ĵ

n+ 1
2

1
∆t (Ĥn+ 1

2 − Ĥn− 1
2 ) = −cRt Ên

1
∆t (Ĵn+ 1

2 − Ĵn−
1
2 ) = ωpÊ

n + ωcb ∧h Ĵn+ 1
2 +Ĵn−

1
2

2

Here the energy Ên := ‖Ên‖2 + ‖Ĥn− 1
2 ‖2 + ‖Ĵn−

1
2 ‖2 satisfies

−∆t
(
〈ωp Ĵ

n+ 1
2 , Ên+1 +��̂E

n〉−〈ωpÊ
n,��

�
Ĵn+ 1

2 + Ĵn−
1
2 〉
)

provided 〈V , b ∧h V 〉 = 0 for all V .

Stability in the energy norm : for
∆t

2
(

12c2

h2
+‖ωp‖2

L∞)
1
2 < 1.
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Remark on average cross products

One can use local averages to define a 2nd order cross
product,

(b∧hV )x := by{Vz} − bz{Vy}

(b∧hV )y := · · ·

(b∧hV )z := · · ·

Then if b(x) = −B0(x)
|B0| is uniform,

〈V , b ∧h V 〉 = 0 holds for all V

→ previous analysis applies.

If b(x) is not uniform this is not so clear...
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Improved stability for a new Yee+J scheme

Discretizing the current on tn, tn+1, . . . yields a new scheme

1
∆t (Ên+1 − Ên) = cRĤn+ 1

2 − ωp
Ĵn+1 + Ĵn

2
1

∆t (Ĥn+ 1
2 − Ĥn− 1

2 ) = −cRt Ên

1
∆t (Ĵn+1 − Ĵn−1) = ωp{Ê}n+ 1

2 + ωcb ∧h
Ĵn+1 + Ĵn

2
.

The energy Ên satisfies

Ên+1−Ên=c∆t
(
〈RĤn+ 1

2 , Ên+1 +��̂E
n〉−〈Rt Ên,��

�
Ĥn+ 1

2 + Ĥn− 1
2 〉
)

−∆t
(
(((

((((
((((〈ωp{Ĵ}n+ 1

2 , 2{Ê}n+ 1
2 〉−(((((

(((
(((

〈ωp{Ê}n+ 1
2 , 2{Ĵ}n+ 1

2 〉
)

once again provided 〈V , b ∧h V 〉 = 0 for all V .

Stability in the energy norm : for c∆t < 2/‖R‖ = h/
√

3.
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Example of the Xu-Yuan scheme

Based on the Yee scheme for the (E ,H) field : general form is
ε0
∆t (En+1 − En) = RHn+ 1

2 − Jn+ 1
2

µ0
∆t (Hn+ 3

2 − Hn+ 1
2 ) = −RtEn+1

1
∆t (Jn+ 3

2 − Jn+ 1
2 ) = ε0ω

2
pE

n+1 + ωcb∧1
2 (Jn+ 3

2 + Jn+ 1
2 ).
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Example of the Xu-Yuan scheme

Based on the Yee scheme for the (E ,H) field : general form is
ε0
∆t (En+1 − En) = RHn+ 1

2 − Jn+ 1
2

µ0
∆t (Hn+ 3

2 − Hn+ 1
2 ) = −RtEn+1

1
∆t (Jn+ 3

2 − Jn+ 1
2 ) = ε0ω

2
pE

n+1 + ωcb∧h 1
2 (Jn+ 3

2 + Jn+ 1
2 ).

Need an explicit solver with the b∧h operator.
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Problem with the X-Y approach

Consider once again the cross product by local averages

(b∧hV )x := by{Vz} − bz{Vy}

(b∧hV )y := · · ·

(b∧hV )z := · · ·

The result
ε0
∆t (En+1 − En) = RHn+ 1

2 − Jn+ 1
2

µ0
∆t (Hn+ 3

2 − Hn+ 1
2 ) = −RtEn+1

1
∆t (Jn+ 3

2 − Jn+ 1
2 ) = ε0ω

2
pE

n+1 + ωcb∧h 1
2 (Jn+ 3

2 + Jn+ 1
2 ).

is a global scheme which needs a linear solver to invert the
matrice.
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Solution : use clustered cross-products

Instead, choose a pattern (α, β, γ) ∈ {−1,+1}3 and define the
first order cross product with local clusters :

(b∧hV )x |i+α
2
,j ,k := byVz |i ,j ,k+ γ

2
− bz{Vy}|i ,j+β

2
,k

(b∧hV )y |i ,j+β
2
,k

:= bzVx |i+α
2
,j ,k − bx{Vz}|i ,j ,k+ γ

2

(b∧hV )z |i ,j ,k+ γ
2

:= bxVy |i ,j+β
2
,k
− by{Vx}|i+α

2
,j ,k

The resulting scheme
ε0
∆t (En+1 − En) = RHn+ 1

2 − Jn+ 1
2

µ0
∆t (Hn+ 3

2 − Hn+ 1
2 ) = −RtEn+1

1
∆t (Jn+ 3

2 − Jn+ 1
2 ) = ε0ω

2
pE

n+1 + ωcb∧h 1
2 (Jn+ 3

2 + Jn+ 1
2 ).

can be solved with a local procedure (i.e. solution is explicit
and local).
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Abstract criterion

The criterion for explicit scheme writes : (b∧h)4 = −(b∧h)2.
Indeed one has the implications

J − αb ∧h J = Z ,

J − α2(b∧h)2J = (I + αb∧h)Z ,

(1 + α2)(b∧h)2J = (b∧h)2(I + αb∧h)Z ,

J = (I + αb∧h)Z +
α2

1 + α2
(b∧h)2(I + αb∧h)Z .

This algebra is enough to compute the solution by means of
explicit and local formulas (for MXYK and new Kernel).
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Short summary

The coupling of the Yee scheme and a linear current is

Stable for : (V , b ∧h V ) = 0

Explicit for : (b∧h)4 = −(b∧h)2

Solution (so far) is clustered first order product

Additional and natural condition is that ωp and ωc are the
same within a cluster.
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Data

Ne Zoom around the foot of the ramp

Cut of the electronic density in the horizontal direction.
An additional kink (in red) is sometimes added at x = 500 to
evaluate the effect of an extremely strong gradient.
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Hz plot

With the kick and 30% noise Without the kick but 40% noise

An instability shows up near x = 500 cells on the left, near
x = 1000

Munich: Pereverzev legacy 13/10/2013 p. 24 / 30



Motivation

Stable
schemes

Explicit
schemes

Numerical
results and
perspectives

20 log10 ‖Hz‖L∞

• With respect to the time and to the level of noise.
• With the kick on the left, without the kick on the right.
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With the first order vectorial product

20 log10 ‖Hz‖L∞ , with respect to the time and to the level of
noise. The computation is done

We observe unconditional stability, with however more
amplitude for a higher level of noise. The number of time steps
is much greater than in previous figure to illustrate the long
time stability of the method.
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Energy dissipation

Initial data is a Dirac mass, at the exact foot of the electronic
density ramp. The external magnetic field used in this set of
runs was B0 = 0.95T . The plasma density Ne(x) is linear, with
its edge at x = 500 grid point. The number of iterations
considered is N = 700 (far from PML layer).

(slide courtesy of F. Da Silva)
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Additional remarks and perspectives

Need to use clustered multiplications by scalar fields,
consistent with clustered cross products.

Counter-intuitive : the stable and explicit scheme is
globally first order (and not second order like the standard
Yee scheme).

Possibility to average in time by alternating the cluster
patterns (α, β, γ) in {−1,+1}3

Work in progress for direct simulation of time-dependent
densities Ne = Ne(x, t) (Doppler reflectometry)

A paper is being written
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An open question (is it really ?)

Look at
−ε0∂tE +∇∧ H = −qeNe(x)ue ,
µ0∂tH +∇∧ E = 0,
me∂tue = −qe(E + B0(x) ∧ ue)− νmeue

plus harmonic forcing on the boundary, plus initial condition,
plus friction ν > 0.

Assume resonance configuration (cyclotron, hybrid, . . .) : do we
have

lim
ν→0+

lim
T→∞

= lim
T→∞

lim
ν→0+

?

In other words, do we have Limit absorption=Limit
amplitude ?

If not, which one is the correct physical solution ?
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limν→0+ limT→∞ (L.M. Imbert-Grard)
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