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Motivation

The equations

No magnetisation (1 = o).

Maxwell equations with a linear current derive from the

linearization po|H| < |Bo| of the Vlasov-Maxwell system (for

electrons) around a strong magnetic field By :

—e0O0tE + VAN H = —qeNe(x) e,
MoatH+V/\E:0,

meOite = —qe(E + Bo(X) A ue) — vmetrs.

Or, writing J = —qeNe(x) e,

e0OtE =V ANH—J,
[LoatH =—-VA E,
ord = aong 4+ web A J

; _ g3 Ne(x) _ 9elBo(x)] — Bo(x)
with wp(x) =/ F2 =, we(x) = #2052 and b(x) = EIOR
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Direct simulation of reflectometry configuration

!Ill The domain is a parallepiped (=~ 1500 cells in x direction) with
an antenna on the side : pulsation w

Motivation n(r)
Emitting S
plane 20 - 50cm 10-15cm
7 Cutoff
+ turb.

«

Antenna

@—< (2]
Vacuum %sn @ 20cm
e |

N

20-30cm

NS

Source :

e Cut-off : in O mode (TM), waves propagate if w > wp(x).

e Cyclotron resonance : w = w¢
e Hybrid resonance : w? = w,(x)? + w?
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"Standard” scheme of Xu-Yuan (2006)

4L

Based on the Yee scheme for the (E, H) field : general form is

Motivation %(En-i—l —E") = RHM 3 _ Jnt3
%(Hnﬁ-% _ Hn—i—%) — _RtEn+1
(I3 = ) = equ2EM fweb A L(UTEE 4 D),
S o P
B2 s
( M . c2 (L,},k]/ MM/ > Ty

@ — Need to specify the operator “A," on the Yee grid

|
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X-mode equations

X-mode=Transverse electric (O-mode not discussed in this

—c00:Ex + 0, H, = J,

= eNeuy,

Jx
e00:E, — OxH; = Jy, Jy = eNeuy,

1100t H; + O4E, — O,E, =0,

Call VLC external

= eE, + eu, BY

'z

_ 0
= eE, — euyB;.

|
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Main difficulty
-_’Ill In fusion plasmas, Ne(x)

has huge fluctuations along the main axis

Motivation

ne W/o frm ——
3.5 ng w/frm ——

0 . . . .
0 200 400 600 800 1000 1200 1400

Negative density (num. or measurement artifact) induces
automatically an instability, as well as strong spatial gradient at the
plasma edge (phys.) or inside the plasma (phys.).

|
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..Illl Example of unstability (for large times)

Magnetic field 20logyq |H| (where |H,| = ||H||1o<) vs. time
Motivation step and level of fluctuations

Xu Yuan kernel with average
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Expertise from F. Da Silva and S. Heuraux.
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Motivation

Some references

e Xu-Yuan, FDTD Formulations for Scattering From 3-D Anisotropic
Magnetized Plasma Objects, IEEE-2006

e Bohner, Simulation of Microwave Propagation in a Fusion Plasma,
Diploma Thesis, MaxPlanck, 2011

e An unconditionally stable ( 7) time-domain discretization on cartesian
meshes for the simulation of nonuniform magnetized cold plasma,
JCP-2012, Tierens-Zutter

e Yu-Simpson, An E-J Collocated 3-D FDTD Model of Electromagnetic
Wave Propagation in Magnetized Cold Plasma, leee Transations on
antennas and propagation, 58-2, 2010

e Smithe, Finite-difference time-domain simulation of fusion plasmas at
radiofrequency time scales, Physics of plasmas, 2007

e da Silva-Heuraux-Ribeiro-Scott, (2013). Development of a 2D full-wave
JE-FDTD Maxwell X-mode code for reflectometry simulation (pp. 16).
Presented at the 9th International Reflectometry Workshop.

|
Munich: Pereverzev legacy 13/10/2013 p.9/30



Outline

4L

Stable
schemes

© Stable schemes

|
Munich: Pereverzev legacy 13/10/2013 p. 10 / 30



4L

Stable
schemes

Energy conservation at the continuous level

e For simplicity : constant density profile Ne(x, t) = Ne(x).
o Inside the computational domain (no boundaries
assumed), the total energy is conserved in time,

E2 H2 eNe e2
d [ (2lEP JHE | meNelueP o
dt Jo \ 2 2110 2

e Using "normalized” variables E := %E, H .= poH and
J:=—L_J we have

wpCEQ
d |AE|2 |A”|2 |A,|2

|
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schemes

Classical stability analysis for the Yee scheme

With normalized variables, the Yee scheme (J = 0) reads

L (ErtL — Eny = cRA™M: E.—1f
1 e ~ where R ¢
A (A2 — [r2) = —cRUE" H := poH.
In particular, the energy " := ||E"||? + ||I:I"*%H%7 satisfies

g"n+1_é‘n — CAt(<RI’_‘In+%’En+1+Eﬁ>_<Rtén7%+/’_‘ln7%>>

A ~ ~ 1, .
hence £" := E" — cAt(E", RH""2) is constant. Moreover,

(E", RE"3)| < 3R = €n(1 - 5¢|R|) < &"

— Stability in the energy norm : for cAt < 2/||R|| = h/\/3
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Stable

schemes

Stability analysis for an abstract Yee+J scheme

~ A

With E, H and J :=

J, the “abstract” Yee+J scheme is

WpCeQ

(Entl — En) = cRH": — wp.7”+%

Here the energy £ := [|E"||2 + | H"~2||2 + || J"~2||? satisfies

— At((wpdtE, BT 4 BR) (w0, BN D2 4 )3y
provided (V,b Ay V) =0 for all V.

At 12¢2

Stability in the energy norm : for > —(—— 12

1
+lwplle)? < 1.

|
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Stable
schemes

Remark on average cross products

@ One can use local averages to define a 2nd order cross
product,

7
(bAV)s = B AVi} — boAVy) T U

/.7'1{»;\ 4
(b/\h V)y =- /(‘¥\ /#
(bARV), == --- -t

-

@ Then if b(x) = —Bl‘l’g(ox‘) is uniform,

(V,bAp V) =0 holds for all V

— previous analysis applies.
@ If b(x) is not uniform this is not so clear...

|
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Improved stability for a new Yee+J scheme

!’ll Discretizing the current on t,, ty4+1, ... Yields a new scheme

( /jn—i-l + jn
2

1 (En+1 o En) — CR/:/nJr% —wp

t

>

A 1 A~ 1

(Hn+§ _ H"fi) — _CRtEn

Stable
schemes

B

jnJrl + /jn
5 .

ﬁ(j}’ﬂrl _ h’]nfl) _ wp{é}n—i—% +web Ay,

The energy &N satisfies
EnL_gn_ cAr((RAI™ ETHY 4 Ry (REEN BE 1 Fn-i))

~ At(lwp {2 {EYTE) — wpl Y 2(0) 7))

once again provided (V,b Ay V) =0 for all V.
Stability in the energy norm : for cAt < 2/||R|| = h/V/3.

|
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..Illl Example of the Xu-Yuan scheme

Based on the Yee scheme for the (E, H) field : general form is

S (E™L - E") = RH™3 — '3
B(H™2 — H"3) = —RYEMH
(I3 = ) = equ2EML  webA L (UM 4 U7,
A7 /ﬁ% A7
LE,I ‘F g LT r,ﬁ# i
ik % “ (35 (1 7 T

|
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Example of the Xu-Yuan scheme

4L

Based on the Yee scheme for the (E, H) field : general form is

En+1 ) RHnJr 5 Jn+%

Explicit
schemes

=
s (H" H"+>:—RfE"+1
(U

3) = eqw2E™ 4 webA R (T 4 U7,

1 pZ
| Ez
ot
. c
Ex T

(Upk)

§
2

H‘L
- ; 7 T
Pt

’f
-H NA
- /[, - >
_ hp
. ¥
(bjk)

“pR) h

Need an explicit solver with the b/}, operator.

]
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..Illl Problem with the X-Y approach

Consider once again the cross product by local averages

A7

V)= bV by}

(bA \/)y = /"Lf*
V), T T

The result

S0 (Ertl _ En) = RHM3 _ Jnt3

%(HH‘F?’ Hn+§) — _RtEn+1

A(ITTE = JTHD) = cqw2EM 4 webARL (IR 4 JTHD),

is a global scheme which needs a linear solver to invert the
matrice.

|
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Solution : use clustered cross-products

!’ll Instead, choose a pattern (v, 3,7) € {—1,+1}3 and define the
first order cross product with local clusters :
(b/\hV)x,iJr%,j,k = by Vz,iJ,k+% - bz{vy}‘,-durg,k
(bAn V)y|,'1j+§7k = bZVX|i+%,j,k - bx{vz}‘i,j,k-i-% yd \.-7}
(bARV)zlijks 3 = bx Vy|,'1j+§7k — by{ Victli+g jk Y

The resulting scheme

Explicit
schemes

S (BT EN) = RH™: — 7
%(HnJr% _ Hn+%) — _RtE,H_l
Ar(I"2 = J72) = cWRETT 4 webAR3 (72 4 7).

can be solved with a local procedure (i.e. solution is explicit
and local).

|
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..’Ill Abstract criterion

The criterion for explicit scheme writes : (bAy)* = —(bAy)?.
Indeed one has the implications

J—abny, =2,
Explicit
schemes

J—a?(bAp)?*J = (I + abAp)Z,
(1 + ®)(bAR)?J = (bAR)?(I + abAp)Z,
a2
1+a
This algebra is enough to compute the solution by means of
explicit and local formulas (for MXYK and new Kernel).

J= (/ + ab/\h)Z + —- (b/\h) ( + Oéb/\h)Z.

|
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..Illl Short summary
The coupling of the Yee scheme and a linear current is

e Stable for : (V,bAp V) =0

o Explicit for : (bAR)* = —(bA)?

@ Solution (so far) is clustered first order product
Explicit

schemes /"7/

o
I

-

@ Additional and natural condition is that w, and w, are the
same within a cluster.

|
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@ Numerical results and perspectives
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Cut of the electronic density in the horizontal direction.
An additional kink (in red) is sometimes added at x = 500 to
evaluate the effect of an extremely strong gradient.
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H, plot

4L

i B N
Numerical - -
results and - i
perspectives w .

- . - - \ - - - R h
With the kick and 30% noise  Without the kick but 40% noise

An instability shows up near x = 500 cells on the left, near
x = 1000

|
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Xu Yuan kernel with average Xu Yuan kernel with average

500
Numerical 0 i
results and -500
perspectives 1000
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Iterations [x10%] Iterations [x10%|

e With respect to the time and to the level of noise.

e With the kick on the left, without the kick on the right.

20 logy HHZHPo
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With the first order vectorial product

4L

MXYK Long stable runs

%

-0.2
0 100 200 300 400 500 600 700 800

Numerical 3
terations [x10%)

results and
perspectives

20logqg ||Hz|| Lo, with respect to the time and to the level of
noise. The computation is done

We observe unconditional stability, with however more
amplitude for a higher level of noise. The number of time steps
is much greater than in previous figure to illustrate the long
time stability of the method.

|
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Energy dissipation

!Ill Initial data is a Dirac mass, at the exact foot of the electronic
density ramp. The external magnetic field used in this set of
runs was By = 0.95T. The plasma density N(x) is linear, with
its edge at x = 500 grid point. The number of iterations
considered is N = 700 (far from PML layer).

11

Numerical 1
results and
perspectives 09 |

0.8 |
0.7

amplitude

0.6

0.5 |

044 L 1 L L
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(slide courtesy of F. Da Silva)
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Additional remarks and perspectives

4L

@ Need to use clustered multiplications by scalar fields,
consistent with clustered cross products.

e Counter-intuitive : the stable and explicit scheme is
globally first order (and not second order like the standard
Numerical Yee scheme).

results and

perspectives @ Possibility to average in time by alternating the cluster
patterns (o, 3,7) in {—1,+1}3
@ Work in progress for direct simulation of time-dependent
densities Ne = N(x,t) (Doppler reflectometry)

@ A paper is being written

|
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perspectives

An open question (is it really ?)

Look at

—00:E + V AN H = —geNe(x)ue,
/,LoatH+V/\E:0,
meOrtue = —qe(E + Bo(X) A Ue) — vmete

plus harmonic forcing on the boundary, plus initial condition,
plus friction v > 0.

Assume resonance configuration (cyclotron, hybrid, ...) : do we
have

[im lim = lim Im 7?
v—0t T—=oo  T—oov—07t

In other words, do we have Limit absorption=Limit
amplitude ?

If not, which one is the correct physical solution ?

|
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lim, 0+ lim7_,5 (L.M. Imbert-Grard)

—a-
b
e
—
—aa
b
T At N
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