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Brainstorming: semiclassical wave equations
General structure of high-frequency linear wave equations

I The wave field is described in the frequency domain and generically denoted by

uε = uε(ω, x), 0 < ε� 1, ω ∈ R, x ∈ Ω ⊆ Rd,

where ε and the frequency ω are independent parameters.
I Particularly, ε encodes the scale separation,

ε = λ(ω)︸ ︷︷ ︸
wavelength

/ L︸︷︷︸
plasma scale

→ 0.

I The field is generally governed by a (pseudo-differential) equation

pε(ω, x,−iε∇)uε(ω, x) = 0,

defined by the formal substitution ξ → −iε∇ in a given function pε(ω, x, ξ).
I The wave field can be either scalar (e.g., the scalar potential φ),

uε(ω, x), pε(ω, x, ξ) ∈ C,

or multi-component (e.g., the electric field E)

uε(ω, x) =
(
uεi (ω, x)

)
i
∈ CN , pε(ω, x, ξ) =

(
pεij(ω, x, ξ)

)
ij
∈ CN×N .

I Wave packets: ω-dependence is dropped and x = (t, r) with r the spatial position.
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Brainstorming: semiclassical wave equations
Technical details: Weyl quantization

(Remark: The dependence on the frequency ω is implied when not needed.)
I Mappings between phase space functions pε(x, ξ) and operators pε(x,−iε∇) are

referred to as quantization maps:

precise definition of the formal substitution ξ → −iε∇.
I Infinitely many quantizations exist and (if properly applied) they are all equivalent.
I The Weyl quantization appears to be the most convenient

pε(x,−iε∇)uε(x) = (2πε)−d
∫
ei(x−x

′)·ξ/εpε
(
x+x′

2
, ξ
)
uε(x′)dx′dξ.

I The function pε(x, ξ) is called symbol of the operator.
I Any (semiclassical) partial differential operator is included. Example:[

ε2∆ + n2(x)
]
uε(x) = pε(x,−iε∇)uε(x), pε(x, ξ) = −ξ2 + n2(x).

In the example,
pε(x, ξ) = e−ix·ξ/εpε(x,−iε∇)e+ix·ξ/ε,

but it is not always so straightforward!
I In general pε(x,−iε∇) is a non-local: Hot plasmas have a non-local response.
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Brainstorming: semiclassical wave equations
Basic hypotheses

I Semiclassical expansion:

pε(x, ξ) ∼ p0(x, ξ) + εp1(x, ξ) + ε2p2(x, ξ) + · · · .

I Assumptions:
1. (WD) weak dissipation: the leading term (principal symbol) is Hermitian,

p
∗
0(x, ξ) = p0(x, ξ).

2. (MC) no linear mode conversion: the real eigenvalues λj(x, ξ) of p0(x, ξ) have
constant multiplicity and are well separated, namely,∣∣∣λj(x, ξ)− λk(x, ξ)

∣∣∣ ≥ Cjk > 0, j 6= k.

I (WD) is violated for resonant wave-plasma interactions:
We need to understand wave dynamics in presence of a strongly non-Hermitian
operators (cf. talk by R. Schubert and previous work by E. Westerhof).

I If (WD) is fulfilled, then (MC) can be dropped: linear mode conversion theory
[Friedland, Kaufman, Tracy, et al.].

I Remark: This formulation of (MC) assumes (WD).
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Brainstorming: semiclassical wave equations
Characteristic variety (aka dispersion relation)

I Not every such operator describes wave propagation.
I Hyperbolicity condition:

Char(pε) = {(x, ξ) ∈ R2d : det p0(x, ξ) = 0} 6= ∅.

I The set Char(pε) is the characteristic variety and represents geometrically the
dispersion relation of the wave.

I Very simple example in one dimension:

pε(x, ξ) = −ξ + 1, pε(x,−iε∇)uε(x) = iε
duε(x)

dx
+ uε(x) = 0,

uε(x) ∝ eix/ε,

the solution is oscillatory with O(ε) wavelength.
I If the characteristic variety is empty, again in one dimension,

pε(x, ξ) = iξ + 1, pε(x,−iε∇)uε(x) = ε
duε(x)

dx
+ uε = 0,

uε(x) ∝ e−x/ε,

the solution is exponential. Those solutions are called evanescent waves.
I Propagating and evanescent waves can appear together: the operator can change

signature from hyperbolic to elliptic, depending on the geometry of Char(pε).
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Brainstorming: semiclassical wave equations
Typical problems associated to wave equations

Given the wave equation (restoring the frequency dependence)

pε(ω, x,−iε∇)uε(ω, x) = 0,

we can pose several physically relevant problems.

1. Initial value problem - wave beams launched by an antenna:

ω is a fixed parameter,
uε(ω, x)|Σ = uε0(ω, x) given on the antenna plane Σ ↪→ Ω ⊂ Rd,

plus conditions on the energy flux and field polarization.

2. Eigenvalue problem - stable/unstable modes supported by the plasma
(similar to cavity modes in electrodynamics):

find eigenvalue-eigenfunction pair
(
ω, uε(ω, x)

)
on a bounded domain Ω ⊂ Rd

with boundary conditions on ∂Ω.

3. Solvability problems (often needed in theory):

given vε(ω, x) satisfying some regularity conditions, find uε(ω, x) such that

pε(ω, x,−iε∇)uε(ω, x) = vε(ω, x).

Practical examples follow ...
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Brainstorming: semiclassical wave equations
Very rough overview of the WKB method and ray theory

I The WKB method is the backbone of semiclassical methods,

uε(x) = aε(x)eiS(x)/ε, aε(x) ∼ a0(x) + εa1(x) + ε2a2(x) + · · · .

I Under conditions (WD) and (MC), eigenmodes decouple [Littlejohn and Flynn,
Emmrich and Weinstein]. (E.g., cold plasma modes in the talk by O. Lafitte.)

I Each eigenvalue λi(x, ξ) with a non-empty characteristic set {λi(x, ξ) = 0}
determines a propagation mode.

I For each mode, the field is polarized in the eigenspace corresponding to λi.
I Geometrical optics equations (independent of ε!){

H(x,∇S) = 0, (eikonal equation),

V (x) · ∇a0(x) + 1
2

(
divV (x) + 2iη(x)

)
a0(x) = 0,

where H(x, ξ) = λi(x, ξ), V (x) = ∇ξH
(
x,∇S(x)

)
, and η(x) accounts for

damping, phase shifts and polarization transport.
I Geometrical optics rays are the field lines of V (x) and are traced by

dx

dτ
= ∇ξH(x, ξ),

dξ

dτ
= −∇xH(x, ξ), H

(
x(τ), ξ(τ)

)
= 0.

I An energy balance equation is obtained from the transport equation for a0(x).
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Brainstorming: semiclassical wave equations
Caustics and diffraction effects

In order to construct a solution for the phase S(x) from rays we need

ξ(τ) = ∇S
(
x(τ)

)
, along rays.

Simple example: focused beam in free space in two dimensions ...

I The congruence of orbits is not
everywhere of the form

ξ = ∇S(x)!

I The WKB ansatz breaks at the focus.
I Description of diffraction effects

motivated the development of
improved semiclassical methods.

I E.g., Pereverzev’s paraxial WKB.
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Waves in fusion plasma physics
Overview

1. Heating, current drive and control of magnetized plasmas.
I Electron cyclotron (EC) frequency:

ω/2π ≈ 140GHz, k0 = ω/c ≈ 30cm
−1
.

I Lower hybrid (LH) frequency:

ω/2π ≈ 4÷ 5GHz, k0 = ω/c ≈ 1cm
−1
.

I Ion cyclotron (IC) frequency:

ω/2π ≈ 40MHz, k0 = ω/c ≈ 0.008cm
−1 (H+ in ASDEX).

All such schemes rely on the resonant wave-particle interaction.
2. Diagnostics.

I Reflectometry and Doppler reflectometry (reflection of microwaves from a cut-off).
(Cf. talk by Bruno Després for a numerical method for reflectometry applications).

I Electron cyclotron emission (ECE) diagnostic (apply the radiative transfer equation to
describe the cyclotron radiation).

3. Linear stability and eigenmodes in plasmas (cf. Transport sessions).
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Waves in fusion plasma physics
Wave heating and current drive: electron cyclotron resonance

General mechanism for ECRH and ECCD.

High-field side Low-field side

Localized
Power deposition

beam 

second harmonic
electron cyclotron res. 

I Localized power deposition allows “surgical strikes”.
I Selective in the electron phase space due to the resonance condition

γ − ωc/ω −N‖
p‖

mec
= 0,

where N‖ and p‖ are the wave refractive index and electron momentum
components parallel to the local magnetic field.



Max-Planck-InstitutfürPlasmaphysik- Garching
Waves in fusion plasma physics
Wave heating and current drive: ECRH and power deposition profiles

typical set-up (just a sketch) driven current and power deposition profiles

ECRH

absorption zone f = 2 f
ce

TORBEAM (E. Poli) and RELAX (E. Westerhof)

Typical output:
I Driven electric current averaged over magnetic surfaces.
I Power deposition: density of the absorbed power in the volume shell enclosed by

magnetic surfaces.
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Waves in fusion plasma physics
Wave heating and current drive: lower frequencies

I Lower hybrid waves are very efficient as a current drive mechanism, e.g., for the
control of the q profile:

I Almost electrostatic wave.
I Main dissipation mechanism: electron

Landau damping.
I Accessibility and power coupling.
I Slow group velocity: parametric decay of

high-power beams.
I Spectral gap problem.
I Full-wave codes are available, but very

expensive and require approximate
solutions for the interpretation of results.

Results of LHBEAM code (N. Bertelli)

I Ion cyclotron waves allow us to heat ion species directly and selectively:
I The effect of plasma inhomogeneity is stronger.
I In fusion plasmas, the lower frequency makes semiclassical solutions questionable.
I Full-wave solvers are available and some are quite fast (TORIC).
I Quasi-linear effects are crucial for a correct description of the absorption: the iteration

between a Maxwell solver and a Fokker-Planck solver is required.

Remark: In the fusion jargon “full-wave solver” means “direct numerical solution of
Maxwell’s equations” as opposed to semiclassical asymptotics.
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Waves in fusion plasma physics
Diagnostics: reflectometry and ECE

I Reflectometry concept: “reflection from the edge of the characteristic variety”.

I The wave beam is reflected from the
electron-density-dependent cut-off.

I The cut-off position is frequency
dependent, hence a scan in frequency
allows the reconstruction of the
electron density profile.

I The interaction of the beam with
turbulent fluctuations near the cut-off
gives information on turbulence.

I Full-wave solvers can be designed,
both in frequency and time domain
(cf. talk by B. Després).

Cut-off position

I Electron cyclotron emission (ECE) measures the temperature of the emitted
electron cyclotron radiation.

I The radiative transfer equation for the transport of the wave spectral intensity is the main
modeling tool.
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Kinetic theory of plasma response and wave-particle interactions
Crash course on quasi-linear theory - I

I The “basic” non-relativistic plasma model: Vlasov-Maxwell with Coulomb
collisions. Plasma particles of the species α are described by the density

fα(t, x, v)dxdv,

measuring the distribution of particles in phase space and satisfying

∂tfα + v · ∇xfα +
qα

mα

(
E +

v ×B
c

)
· ∇vfα =

∑
β

Cα/β(fα, fβ),

Cα/β(fα, fβ) = ∇v ·
[
D(fβ)∇vfα +A(fβ)fα

]
+ self-consistent Maxwell’s equations for E and B.

I Quasi-linear theory (heuristic arguments). Stationary solutions of the form

fα(t, x, v) = Fα(x, v) + Re
[
e−iωtf̃α(ω, x, v)

]
,

E(t, x) = Re
[
e−iωtẼ(ω, x)

]
,

B(t, x) = B0(x) + Re
[
e−iωtB̃(ω, x)

]
.

I Average over the fast time scale,

〈fα(·, x, v)〉ω = Fα(x, v), 〈E(·, x)〉ω = 0, 〈B(·, x)〉ω = B0(x) = conf. field.
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Kinetic theory of plasma response and wave-particle interactions
Crash course on quasi-linear theory - II

I On making use of the ansatz into the Vlasov-Fokker-Planck equation with
collisions linearized over a Maxwellian background and averaging in time, one has

v · ∇xFα + (v × Ωα) · ∇vFα = −∇v ·
1

2
Re
[ qα
mα

(
Ẽ∗ +

v × B̃∗

c

)
f̃α
]

+ Cα(Fα),

Ωα(x) = qαBo(x)/mαc, Cα(Fα) = ∇v ·
[
Dαc (x, v)∇vFα +Aαc (x, v)Fα

]
.

I The remaining part of the Vlasov equation determines the perturbation

−iωf̃α + v · ∇xf̃α + (v × Ωα) · ∇v f̃α = −
qα

mα

(
Ẽ +

v × B̃
c

)
· ∇vFα,

+ collisions neglected,
+ nonlinearities neglected (along with nonlinear harmonics generation: e±i2ω , e±i3ω, . . .)

I Accepting the approximations, the system has a “certain elegance”:{
LαFα = Qα(Ẽ, B̃, Fα) + Cα(Fα),

+ self-consistent Maxwell’s equations for for harmonics fields Ẽ and B̃,

where Lα = v · ∇x + (v × Ωα) · ∇v describes advection along unperturbed
particle orbits.
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Kinetic theory of plasma response and wave-particle interactions
Crash course on quasi-linear theory - III

I At last, one has an advection-diffusion equation in phase space,

LαFα = ∇v ·
[
Dα∇vFα +Aαc Fα

]
,

Dα = Dαc (x, v)︸ ︷︷ ︸
linearized coll. diffusion

+Dαql(x, v, Ẽ, B̃)︸ ︷︷ ︸
quasi-linear diffusion

.

I The distribution function Fα is supposed to relax to an isotropic limit in the
remaining fast variables. Example: gyrophase

Fα(x, v) = Fα(x, v‖, v⊥, φ) = F̂α(x, v‖, v⊥) + correction,

and averaging over φ,

v‖∇‖F̂α −
v2
⊥

2B0

dB0

ds

[∂F̂α
∂v‖

−
v‖

v⊥

∂F̂α

∂v⊥

]
=

∂

∂v‖

[
Γα‖

]
+

1

v⊥

∂

∂v⊥

[
v⊥Γα⊥

]
.

I Accounting for the property of the particle orbit (constants of motion and adiabatic
invariants) one has better averages, namely,

I Bounce average.
I Orbit average.

I Example: RELAX is a bounce-averaged relativistic Fokker-Planck solver for
electrons (cf. the talk by E. Westerhof).

I Averaging techniques are at the basis of gyrokinetic theory (cf. talk by N. Tronko).
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Kinetic theory of plasma response and wave-particle interactions
The plasma dielectric tensor

I At last, let us consider the coupled Maxwell’s equations
∇× Ẽ − i

ω

c
B̃ = 0,

∇× B̃ + i
ω

c
Ẽ =

4π

c
J̃,

J̃(ω, x) =
∑
α

qα

∫
Rd
vf̃α(ω, x, v)dv.

I From the linearized Vlasov equation (formally),

f̃α(ω, x, v) =
[
− iω + Lα

]−1
[
−

qα

mα

(
Ẽ +

v × B̃
c

)
· ∇vFα

]
,

=
[
− iω + Lα

]−1 ◦MαẼ.

I Then J̃ is the result of a non-local operator acting on Ẽ.
I Second-order equation for the electric field only

∇×
(
∇× Ẽ

)
−
ω2

c2
ε̂Ẽ = 0, ε̂Ẽ = Ẽ +

4πi

ω
J̃ = dielectric operator.

I Semiclassical structure: after normalization x→ Lx we have

κ =
ωL

c
=

1

ε
.

I Is ε̂ really a pseudo-differential operator?
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Kinetic theory of plasma response and wave-particle interactions
The plasma dielectric tensor: the cold plasma model

I Simplified plasma models for high frequencies.
I Ion at rest: too heavy to respond to the fast wave disturbance.
I Electrons move coherently with velocity ve(t, x),

me∂tve = −e
(
E + ve ×B/c

)
,

J = −eneve.

This is called cold plasma model, as electrons have no thermal spread.
I The corresponding dielectric operator reduces to matrix multiplication by

ε =

 S −iD 0
iD S 0
0 0 P


with S, D, P depending on ω, Ωe, and ωpe only.

I As far as one is not interested in absorption, this is a good approximation.
I The relevant wave equation reduces to a partial differential equation and can be

solved numerically (cf. the talk by B. Després).
I Two propagation modes: O-mode and X-mode (cf. talk by O. Lafitte).
I In the time domain, the cold plasma model amounts to a symmetric hyperbolic

system.
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Pereverzev’s paraxial WKB method
Classical idea of paraxial beams

I Let us split the coordinates according to x = (y, z) ∈ Rd−1 × R:
I y ∈ Rd−1 normal directions;
I z ∈ R propagation direction.

I Exact solution of the Helmholtz equation in free space

uε(x) = (2πε)−d
∫
Rd−1

eiy·η/εeiz
√

1−η2/εûε(η)dη.

I When the spectrum ûε(η) is localized near η = 0, then√
1− η2 ≈ 1−

1

2
η2, (paraxial approximation).

I Now a Gaussian spectrum corresponds to a Gaussian beam.
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Pereverzev’s paraxial WKB method
Pereverzev’s approach to paraxial beams

I Idea: build a representation of the transverse structure of the beam, by using an
adapted basis instead of Fourier representation.

I Paraxial WKB ansatz
uε(x) = Aε(x)eiS(x)/ε,

Aε(x) = a(x)Φmn
(
v(x)/

√
ε
)

− i
√
εbα(x)

∂Φmn

∂ζα

(
v/
√
ε
)
−
ε

2

∂2Φmn

∂ζα∂ζβ

(
v/
√
ε
)

+O(ε3/2),

I Here, with d = 3,
Φmn(ζ) = ϕm(ζ1)ϕn(ζ2),

and ϕn are the parabolic cylinder functions (Hermite-Gaussian modes).
I The two functions

v = (v1, v2), vα = vα(x), α = 1, 2,

are transverse coordinates to be determined around the curve

R = {x : v(x) = 0},

called reference ray. Let s(x) be a third coordinate completing the system.
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Pereverzev’s paraxial WKB method
Basic equations

I Expansion of pseudo-differential equations with assumptions (WD) and (MC)

iε
∂p0

∂ξi

∂A

∂xi
+
ε2

2

∂2p0

∂ξi∂ξj

∂2A

∂xi∂xj

−
[
p0 −

iε

2

( ∂

∂xi

[∂p0

∂ξi

]
+ 2ip1

)]
A = O(ε3/2).

I Using the ansatz and going through quite a lot of calculations one obtains

H(x,∇S)−
1

2
Λαβ(s)vαvβ = O(|v|3),

Hα(x,∇S,∇v) = O(|v|2)

Hαβ(x,∇S,∇v)−∆αβ(s) = O(|v|),

V · ∇a+
1

2

(
divV + 2i(η + χmn)

)
a = O(|v|),

where H(x, ξ) is the considered eigenvalue of p0,

Hα = ∇vα · ∇ξH(x,∇S), Hαβ = ∇vα ·D2
ξH(x,∇S)∇vβ ,

and Λαβ and ∆αβ are multipliers. This is valid locally near R = {x : v(x) = 0}.
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Pereverzev’s paraxial WKB method
Deformation of the geometrical-optics Lagrangian manifold near caustics

Geometrical optics Paraxial WKB

The deformed Lagrangian manifold does not have a critical point.



Max-Planck-InstitutfürPlasmaphysik- Garching
Pereverzev’s paraxial WKB method
Beam tracing equations

As a necessary condition, the above system implies the following
I The reference ray R is a geometrical optics ray.
I Evolution equations along the reference ray,

−
dSij

dτ
=

∂2H

∂xi∂xj
+ Sik

∂2H

∂ξk∂xj
+

∂2H

∂xi∂ξk
Skj + Sik

∂2H

∂ξk∂ξl
Slj − φik

∂2H

∂ξk∂ξl
φlj

−
dφij

dτ
= φik

∂2H

∂ξk∂xj
+

∂2H

∂xi∂ξk
φkj + Sik

∂2H

∂ξk∂ξl
φlj + φik

∂2H

∂ξk∂ξl
Slj

plus a constraint on the initial conditions,

∂H

∂xi
+ Sik

∂H

∂ξk
= 0, φik

∂H

∂ξk
= 0.

I Sij = Hessian matrix of the phase, i.e., phase front curvature.
I φij = quadratic form determining the elliptical beam cross section.
I A relatively small system of ordinary differential equations suffices to reconstruct

the wave field.
I This can be proven to be strictly related to complex geometrical optics and

extended ray theory (D. Farina, A. Peeters).
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Pereverzev’s paraxial WKB method
Ray description of eigenmodes

I Stable orbit
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I Unstable orbit
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Pereverzev’s paraxial WKB method
Relation to the variational Hamilton’s equations and stability

I Hamilton’s equations (coordinate free form)

dz/dτ = J∇H(z),

where J−1 is the symplectic form.
I Fixing an orbit z(τ), we study its stability. Let z(τ) + δz(τ), then, linearizing,

dδz(τ)/dτ = JD2H
(
z(τ)

)
δz(τ).

I The solution of the variational system is

δz(τ) = U(τ)δz0, dU(τ)/dτ = JD2H
(
z(τ)

)
U(τ), U(0) = I,

I Upon writing

U =

(
A B
C D

)
, Ψ =

[
C + iD

]
·
[
A+ iB

]−1
, S = ReΨ, φ = ImΨ,

S and Φ solve the paraxial WKB equations. The viceversa also holds true.
I In summary, the paraxial WKB solution entails the information on stability.
I This results establishes a link to Gaussian beams (cf. the talk by O. Runborg) ...
I ... as well as to Littlejohn’s wave packet method and Maslov’s complex WKB.
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Wave kinetic equation
Rough summary of the theory

I In random media, the wave field uε should be regarded as a random field.
I Wigner matrix

W ε(x, ξ) = (2πε)−d
∫
e−iξ·s/εuε

(
x+

s

2

)
uε
(
x−

s

2

)∗
ds.

I Semiclassical expansion in S′(R2d),

E(W ε) ∼ w(x, ξ)e(x, ξ)e∗(x, ξ) +O(ε), ε→ 0,

where E is the expectation value operator.
I The formal limit satisfies{

H(x, ξ)w(x, ξ) = 0,{
H,w

}
(x, ξ) = −2γ(x, ξ)w(x, ξ) + S(w)(x, ξ),

with scattering operator S(w) accounting for the interaction with turbulence.
I A Monte Carlo scheme has been developed for the boundary value problem.
I New wave kinetic code WKBeam at IPP (H. Weber Master thesis).
I Kinetic interpretation of rays (cf. talk by G. Tanner).
I Relationship to the kinetic equations used in turbulence? (Cf. talk by N. Tronko).
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Wave kinetic equation
Preliminary results from WKBeam (Hannes Weber)

I ASDEX-Upgrade

I ITER



Max-Planck-InstitutfürPlasmaphysik- Garching
Summary

1. Semiclassical methods provide an easy and affordable approach to complicated
non-local linear equations.

2. Unfortunately, we are limited to operators with Hermitian principal part: weak
dissipation. Non-Hermitian dynamics→ R. Schubert.

3. ECRH and ECCD→ E. Westerhof and D. Farina.

4. LH and IC waves→ A. Cardinali.

5. Quasi-linear theory for the back-reaction on the plasma→ E. Westerhof.

6. Averaging methods in quasi-linear theory.

7. Full-wave solvers for cold plasmas→ B. Després and O. Lafitte.

8. Pereverzev’s paraxial WKB and beam tracing.

9. Generalizations to phase space and random media?

10. Gaussian beams→ O. Runborg.

11. Eigenvalue problems for linearly unstable eigenmodes.

12. Nonlinear eigenmodes? Which models? Which techniques?

13. Distribution of wave field intensity→ G. Tanner.

14. Wave kinetic equation→ N. Tronko.

15. Beyond fusion: spiral galaxies, solar corona, plasma thrusters→ A. Cardinali.
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