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Brainstorming: semiclassical wave equations
General structure of high-frequency linear wave equations
» The wave field is described in the frequency domain and generically denoted by
u® =uf(w,z), 0<e<kl, wEeR, z € Q CR?,

where ¢ and the frequency w are independent parameters.
» Particularly, e encodes the scale separation,

e= Mw) / L, =0
N~ ~—~
wavelength ~ Plasma scale

» The field is generally governed by a (pseudo-differential) equation
pE (w7 T, —isV)uE (w7 x) = 07

defined by the formal substitution ¢ — —icV in a given function p¢ (w, z, £).
» The wave field can be either scalar (e.g., the scalar potential ¢),

u®(w,z), p°(w,z,§) €C,
or multi-component (e.g., the electric field E)
u (w,) = (uf (w,2)), €CY, p*(w,2,8) = (b5 (w,2,8)),, € VN

» Wave packets: w-dependence is dropped and = = (¢, r) with r the spatial position.



Brainstorming: semiclassical wave equations
Technical details: Weyl quantization
(Remark: The dependence on the frequency w is implied when not needed.)

» Mappings between phase space functions p¢(z, ) and operators p¢(z, —ieV) are
referred to as quantization maps:

precise definition of the formal substitution { — —icV.
» Infinitely many quantizations exist and (if properly applied) they are all equivalent.
» The Weyl quantization appears to be the most convenient

PF (2, —ieV)us () = (2me) / i ()€ e (2 ) (af)do'd.
» The function p*(z, &) is called symbol of the operator.
» Any (semiclassical) partial differential operator is included. Example:

[*A +n®(0)]u (2) = p* (2, —ieV)u(x),  p°(2,6) = —€* +n*(x).

In the example, )
ps (m7 6) = eilw'g/sps (a:’ _st)e+zz£/e7
but it is not always so straightforward!
> In general p(z, —icV) is a non-local: Hot plasmas have a non-local response.



Brainstorming: semiclassical wave equations

Basic hypotheses

v

Semiclassical expansion:

pa(x’ g) ~ po(x, g) + €p1($,£) + €2p2(27£) +e
Assumptions:
1. (WD) weak dissipation: the leading term (principal symbol) is Hermitian,

P;(CE, 5) = po(z, f)

2. (MC) no linear mode conversion: the real eigenvalues \; (z, &) of po(x, £) have
constant multiplicity and are well separated, namely,

v

(@) = (@, &) 2 Coe >0, # k.

v

(WD) is violated for resonant wave-plasma interactions:

We need to understand wave dynamics in presence of a strongly non-Hermitian
operators (cf. talk by R. Schubert and previous work by E. Westerhof).

If (WD) is fulfilled, then (MC) can be dropped: linear mode conversion theory
[Friedland, Kaufman, Tracy, et al.].

Remark: This formulation of (MC) assumes (WD).

v

v



Brainstorming: semiclassical wave equations

Characteristic variety (aka dispersion relation)

>

>

Not every such operator describes wave propagation.
Hyperbolicity condition:

Char(p®) = {(x,¢) € R?¢ : det po(x,£) = 0} # 0.

The set Char(p®) is the characteristic variety and represents geometrically the

dispersion relation of the wave.
Very simple example in one dimension:

pe(wu E) = _E + 17 ps(a:? —2€V)u‘5(z) =€

ix/e
b

du;iz) +uf(z) =0,
u®(z) x e

the solution is oscillatory with O(e) wavelength.
If the characteristic variety is empty, again in one dimension,

€
o =ie+1, p(e eVt =« D pus =g,
uf(z) ox e~ /¢,

the solution is exponential. Those solutions are called evanescent waves.

Propagating and evanescent waves can appear together: the operator can change

signature from hyperbolic to elliptic, depending on the geometry of Char(p®).



Brainstorming: semiclassical wave equations

Typical problems associated to wave equations

Given the wave equation (restoring the frequency dependence)
ps(wvmu —ieV)uE(w,a:) = 07

we can pose several physically relevant problems.

1. Initial value problem - wave beams launched by an antenna:

w is a fixed parameter,
uf (w, )| = u§(w,z) given on the antenna plane £ — Q C R,
plus conditions on the energy flux and field polarization.

2. Eigenvalue problem - stable/unstable modes supported by the plasma
(similar to cavity modes in electrodynamics):

find eigenvalue-eigenfunction pair (w, u®(w, )) on a bounded domain  C R4
with boundary conditions on 992.

3. Solvability problems (often needed in theory):
given v¢ (w, =) satisfying some regularity conditions, find u¢ (w, ) such that

% (w, z, —ieV)u® (w, z) = v (w, z).

Practical examples follow ...




Very rough overview of the WKB method and ray theory

Brainstorming: semiclassical wave equations m

» The WKB method is the backbone of semiclassical methods,
ul(z) = a®(2)e® @/ af(z) ~ ag(z) + car (z) + 2as(x) + - - -
» Under conditions (WD) and (MC), eigenmodes decouple [Littlejohn and Flynn,

Emmrich and Weinstein]. (E.g., cold plasma modes in the talk by O. Lafitte.)

» Each eigenvalue \;(z, £) with a non-empty characteristic set {\;(z, &) = 0}
determines a propagation mode.

» For each mode, the field is polarized in the eigenspace corresponding to A;.
» Geometrical optics equations (independent of £!)

{ H(z,VS) =0, (eikonal equation),
V(z) - Vao(z) + %(divV(z) + 2in(z))ao(z) = 0,

where H(z,€) = Xi(z,€), V(z) = VeH (2, VS(z)), and n(z) accounts for
damping, phase shifts and polarization transport.

» Geometrical optics rays are the field lines of V' (z) and are traced by

Z—i = V¢H(z,§), % = —-V.H(z,¢§), H(m(T),S(T)) =0.

» An energy balance equation is obtained from the transport equation for ag ().



Caustics and diffraction effects

Brainstorming: semiclassical wave equations W

In order to construct a solution for the phase S(x) from rays we need
&(r) =VS(z(r)), along rays.

Simple example: focused beam in free space in two dimensions ...

v

The congruence of orbits is not
everywhere of the form

£ =V5S(a)!

v

The WKB ansatz breaks at the focus.

Description of diffraction effects
motivated the development of
improved semiclassical methods.

» E.g., Pereverzev’s paraxial WKB.

v

0.6881.00



Waves in fusion plasma physics

Overview

1. Heating, current drive and control of magnetized plasmas.
> Electron cyclotron (EC) frequency:

w/2m &~ 140GHz, ko = w/c ~ 30cm ™",

> Lower hybrid (LH) frequency:

w/2m &~ 4+ 5GHz, ko =w/c~ lem .

> lon cyclotron (IC) frequency:
w/27 ~ 40MHz, ko = w/c ~ 0.008cm™ "' (HT in ASDEX).
All such schemes rely on the resonant wave-particle interaction.

2. Diagnostics.

> Reflectometry and Doppler reflectometry (reflection of microwaves from a cut-off).
(Cf. talk by Bruno Després for a numerical method for reflectometry applications).

> Electron cyclotron emission (ECE) diagnostic (apply the radiative transfer equation to
describe the cyclotron radiation).

3. Linear stability and eigenmodes in plasmas (cf. Transport sessions).




Waves in fusion plasma physics

Wave heating and current drive: electron cyclotron resonance

General mechanism for ECRH and ECCD.

High-field side Low-field side

second harmonic

electron cyclotron res.

P S—
beam

\ Localized
& Power deposition

140 160 180 200 220

R[cm]

» Localized power deposition allows “surgical strikes”.
» Selective in the electron phase space due to the resonance condition

p
v —we/w — N il 0,
meC
where N and p| are the wave refractive index and electron momentum
components parallel to the local magnetic field.




Waves in fusion plasma physics

Wave heating and current drive: ECRH and power deposition profiles

typical set-up (just a sketch) driven current and power deposition profiles
00 Current density (with momentum conservation)
’ ~ - TORBEAM profile s
—  0.015H — RELAX profile
NE J /_/\ \‘
£
5 oo / 3
2 0.005 92 X
5 0.
3 o Power deposition profile
5 —_— 0'07 - - TORBEAM pmfi\e‘ g \
H = — RELAX profile v
v B 0.061 .. o tended rays | s
= = 0
Nl T 2, 0.04 g \
So Y
S : X
S oo o \
0.00 = -
0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885

TORBEAM (E. Poli) and RELAX (E. Westerhof)

Typical output:
» Driven electric current averaged over magnetic surfaces.

» Power deposition: density of the absorbed power in the volume shell enclosed by
magnetic surfaces.



Waves in fusion plasma physics

Wave heating and current drive: lower frequencies

» Lower hybrid waves are very efficient as a current drive mechanism, e.g., for the
control of the ¢ profile:
> Almost electrostatic wave.

> Main dissipation mechanism: electron
Landau damping.

> Accessibility and power coupling.

> Slow group velocity: parametric decay of
high-power beams.

> Spectral gap problem.

> Full-wave codes are available, but very
expensive and require approximate Results of LHBEAM code (N. Bertelli)
solutions for the interpretation of results.
» lon cyclotron waves allow us to heat ion species directly and selectively:

> The effect of plasma inhomogeneity is stronger.

In fusion plasmas, the lower frequency makes semiclassical solutions questionable.
Full-wave solvers are available and some are quite fast (TORIC).

Quasi-linear effects are crucial for a correct description of the absorption: the iteration
between a Maxwell solver and a Fokker-Planck solver is required.

vyvy

Remark: In the fusion jargon “full-wave solver” means “direct numerical solution of
Maxwell’s equations” as opposed to semiclassical asymptotics.



Waves in fusion plasma physics

Diagnostics: reflectometry and ECE

» Reflectometry concept: “reflection from the edge of the characteristic variety”.

> The wave beam is reflected from the
electron-density-dependent cut-off.

> The cut-off position is frequency
dependent, hence a scan in frequency
allows the reconstruction of the
electron density profile.

> The interaction of the beam with
turbulent fluctuations near the cut-off
gives information on turbulence.

> Full-wave solvers can be designed,
both in frequency and time domain
(cf. talk by B. Després).

Cut-off position

N
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» Electron cyclotron emission (ECE) measures the temperature of the emitted

electron cyclotron radiation.

200

> The radiative transfer equation for the transport of the wave spectral intensity is the main

modeling tool.



Crash course on quasi-linear theory - |

Kinetic theory of plasma response and wave-particle interactions W

» The “basic” non-relativistic plasma model: Vlasov-Maxwell with Coulomb
collisions. Plasma particles of the species « are described by the density

fa(t,z,v)dzdv,
measuring the distribution of particles in phase space and satisfying

qa v X B o/
0 a *VaJa —\E — ) - Vyfa = C %) ’
1S, +”Vf+ma( +=) ; (far £5)

CP (fas f5) = Vo - [D(f5) V0 fa + A(f5) fa]

+ self-consistent Maxwell’s equations for E and B.
» Quasi-linear theory (heuristic arguments). Stationary solutions of the form
fa(t,z,v) = Fo(z,v) + Re [e_i“’tfa(w, T, v)] ,
E(t,z) = Re [e_i‘”tE(w, w)],
B(t,z) = Bo(z) + Re [eii“’té(w, x)] .
» Average over the fast time scale,

(fa(,2,0))0 = Fal(z,v), (E(,2))w =0, (B(,z))w = Bo(z) = conf. field.



Crash course on quasi-linear theory - Il

Kinetic theory of plasma response and wave-particle interactions W

» On making use of the ansatz into the Vlasov-Fokker-Planck equation with
collisions linearized over a Maxwellian background and averaging in time, one has

1 " -
v -VeFo+ (v X Qo) VoFo =—-V, - §Re[q—<E*+

Ma

DB 7 v e r),

Qa(z) = gaBo(x)/mac, C*(Fa) =V, - [D?(x,v)VvFa + A% (z, U)Fa].
» The remaining part of the Vlasov equation determines the perturbation

) ) _ L B
*iwfa‘i’v‘vzfa“r(vxga)‘vvfasz(E+’UX
Ma

)~V1,Fa,

+ collisions neglected,

+ nonlinearities neglected (along with nonlinear harmonics generation: eFi2w etidw J)

» Accepting the approximations, the system has a “certain elegance”:

LaFa = Q%(E, B, Fa) + C*(Fa),
+ self-consistent Maxwell’s equations for for harmonics fields £ and B,

where Lo =v -V + (v X Q4) - V,, describes advection along unperturbed
particle orbits.



Crash course on quasi-linear theory - Ill

Kinetic theory of plasma response and wave-particle interactions m

» At last, one has an advection-diffusion equation in phase space,

LaFo =V [D*V,Fa+ AZFa],
D% = Dg(z,v) + Dgj(z,v, E,B).
N—— P Y —
linearized coll. diffusion  quasi-linear diffusion
» The distribution function Fy, is supposed to relax to an isotropic limit in the
remaining fast variables. Example: gyrophase
Fo(z,v) = Fa(z,v),vL,¢) = Fo (@, v),v1) + correction,
and averaging over ¢,

vV Fa = i@[% - %‘%J = a%l[rﬁ‘] +i%[v¢lﬂi]‘

» Accounting for the property of the particle orbit (constants of motion and adiabatic
invariants) one has better averages, namely,

> Bounce average.
> Orbit average.

» Example: RELAX is a bounce-averaged relativistic Fokker-Planck solver for
electrons (cf. the talk by E. Westerhof).

» Averaging techniques are at the basis of gyrokinetic theory (cf. talk by N. Tronko).



The plasma dielectric tensor

Kinetic theory of plasma response and wave-particle interactions W

> At last, let us consider the coupled Maxwell’s equations

VxE—iYB=o,

c~ - an/ vfaw:cv)dv

w
VXB+i—FE=—J],
c Cc
» From the linearized Vlasov equation (formally),
. . [ Ga (7, UXB
Jalw,z,0) = [—iw+ La] [ - 22 (B4 ) VoFal,
Mea (&

= [fiw+£a}7loMaE.

Then J is the result of a non-local operator acting on E.
Second-order equation for the electric field only

v

v

. 2 . _ . Amioe .
Vx(VxE)- W—QéE =0, ¢E=FE+ ——J= dielectric operator.
C w

» Semiclassical structure: after normalization x — Lx we have
wL 1

K= — = —.
c €

v

Is ¢ really a pseudo-differential operator?



Kinetic theory of plasma response and wave-particle interactions

The plasma dielectric tensor: the cold plasma model

>

Simplified plasma models for high frequencies.

» lon at rest: too heavy to respond to the fast wave disturbance.

Electrons move coherently with velocity ve (¢, z),

MeOtVe = —e(E—i—ve X B/c),

J = —eneve.

This is called cold plasma model, as electrons have no thermal spread.
The corresponding dielectric operator reduces to matrix multiplication by

S —iD 0
e=|iD S 0
0 0 P

with S, D, P depending on w, Q., and wpe only.
As far as one is not interested in absorption, this is a good approximation.

The relevant wave equation reduces to a partial differential equation and can be
solved numerically (cf. the talk by B. Després).

Two propagation modes: O-mode and X-mode (cf. talk by O. Lafitte).

In the time domain, the cold plasma model amounts to a symmetric hyperbolic
system.



Pereverzev’s paraxial WKB method

Classical idea of paraxial beams

v

Let us split the coordinates according to = = (y,2) € R~ x R:

> 4 € R normal directions;
> z € R propagation direction.

Exact solution of the Helmholtz equation in free space

v

d—1

u®(x) = (271'5)7‘1/ ety /e iz 1-n?/epe (n)dn.
R

v

When the spectrum 42 (n) is localized near n = 0, then

1 . . .
Vi-n2=x~1- 5772, (paraxial approximation).

» Now a Gaussian spectrum corresponds to a Gaussian beam.



Pereverzev’s approach to paraxial beams

Pereverzev’s paraxial WKB method W

» Idea: build a representation of the transverse structure of the beam, by using an
adapted basis instead of Fourier representation.

» Paraxial WKB ansatz )
uE(Cﬂ) _ As(m)ezﬁ'(ac)/s7
A% (z) = a(@)Pmn (v(z)/VE)

e (o)

€ 2Pmn
(v/Ve) — 2 3Caach

(v/VE) + O(e%/?),

» Here, with d = 3,
Pmn(€) = om (¢Hen(C?),

and ., are the parabolic cylinder functions (Hermite-Gaussian modes).
» The two functions

v= (vl,v2), v* =v%(z), a=1,2,
are transverse coordinates to be determined around the curve
R ={z:v(z) =0},

called reference ray. Let s(x) be a third coordinate completing the system.



Pereverzev’s paraxial WKB method

Basic equations

» Expansion of pseudo-differential equations with assumptions (WD) and (MC)
,Eﬁpo 0A g2 9%pg  0%A
K2 - - - -
o&; Oxt 2 8&85] oxtdxi

b5 Galag]ram)la=oe

» Using the ansatz and going through quite a lot of calculations one obtains

1
H(z,VS) — 5/\&5(5)1)0‘11’8 = O(Jv]®),
H%(z,VS,Vv) = O(|v|2)
H*P(2,V8,Vv) — A (s) = O(Jv]),

1
V -Va + 5 (divV + 2i(n + an))zz = O(|v]),
where H(z, €) is the considered eigenvalue of po,
H® = Vo™ - VeH(z,VS), H* =vVv*. D}H(z,VS)VvP,

and A, and A8 are multipliers. This is valid locally near R = {z : v(z) = 0}.




Pereverzev’s paraxial WKB method

Deformation of the geometrical-optics Lagrangian manifold near caustics

Geometrical optics Paraxial WKB

0.6881.00 0.6801.00

The deformed Lagrangian manifold does not have a critical point.



Beam tracing equations

Pereverzev’s paraxial WKB method W

As a necessary condition, the above system implies the following
» The reference ray R is a geometrical optics ray.
» Evolution equations along the reference ray,

dS;; 0°H 0’H 9°H 0°H 0°H
—— = ——— + Si, -+ Sk + Sik 551 — Pik o Pl
dr OxidxI 0E,0xd  OxidE, 0ELOE; 9,08,
_ doij 0?H 0?H 0?H 0°H
= _ _ 1S, . B
ar ~ "% og0m T awiog, M T T o508, T ag08,

plus a constraint on the initial conditions,

OH OH OH
4 e. 2 —0 il
9zt + Sik 8&@ , Pik 8£k

=0.
> S;; = Hessian matrix of the phase, i.e., phase front curvature.
> ¢;; = quadratic form determining the elliptical beam cross section.

» A relatively small system of ordinary differential equations suffices to reconstruct
the wave field.

» This can be proven to be strictly related to complex geometrical optics and
extended ray theory (D. Farina, A. Peeters).



Pereverzev’s paraxial WKB method

Ray description of eigenmodes

» Stable orbit

Number of passes = 1 Number of passes = 10 Number of passes = 100

a\Ve
W
I
A
AN
IV

15 -10 05 00 05 10 1 15 -10 05 05 05 10 1 15 -io —05 00 05 10 1

» Unstable orbit

Number of passes = 1

jumber of passes = 10

15 10 05 00 05 10 1 15 —10 05 05 05 10 1 15 1o 05 00 05 10 1:



Pereverzev’s paraxial WKB method

Relation to the variational Hamilton’s equations and stability

>

\{

Hamilton’s equations (coordinate free form)
dz/dr = JVH(z),

where J~1 is the symplectic form.
Fixing an orbit z(7), we study its stability. Let z(7) 4+ §z(7), then, linearizing,

ddz(t)/dr = JD?*H (2(7))éz(r).
The solution of the variational system is
0z(1) =U(1)0z0, dU(T)/dT = JD2H(Z(T))U(7'), U) =1,

Upon writing

C D

U:(A B), U =[C+iD]-[A+iB]"!, S=Re¥, ¢=Imy,

S and ® solve the paraxial WKB equations. The viceversa also holds true.
In summary, the paraxial WKB solution entails the information on stability.

This results establishes a link to Gaussian beams (cf. the talk by O. Runborg) ...

... as well as to Littlejohn’s wave packet method and Maslov’s complex WKB.



Wave kinetic equation

Rough summary of the theory

v VvV Vv

v

In random media, the wave field «¢ should be regarded as a random field.
Wigner matrix

We(z, &) = (27F€)7d/€7i§'s/£u£ (z+ g)ue (= — g)*ds.
Semiclassical expansion in S’ (R24),

E(W?) ~ w(z,§)e(z,§)e” (2,£) + O(e), & —0,

where E is the expectation value operator.
The formal limit satisfies

{ H(z, Hw(x, &) =0,
{H,w}(z,8) = —2y(z, O w(z, &) + S(w)(x,§),

with scattering operator S(w) accounting for the interaction with turbulence.

A Monte Carlo scheme has been developed for the boundary value problem.
New wave kinetic code WKBeam at IPP (H. Weber Master thesis).

Kinetic interpretation of rays (cf. talk by G. Tanner).

Relationship to the kinetic equations used in turbulence? (Cf. talk by N. Tronko).




Wave kinetic equation

Preliminary results from WKBeam (Hannes Weber)

» ASDEX-Upgrade

(c) scan on correlation length L, dne/n. = 0.1, App = 0.025:
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Summary

. Semiclassical methods provide an easy and affordable approach to complicated

non-local linear equations.

. Unfortunately, we are limited to operators with Hermitian principal part: weak

dissipation. Non-Hermitian dynamics — R. Schubert.

. ECRH and ECCD — E. Westerhof and D. Farina.

. LH and IC waves — A. Cardinali.

. Quasi-linear theory for the back-reaction on the plasma — E. Westerhof.
. Averaging methods in quasi-linear theory.

. Full-wave solvers for cold plasmas — B. Després and O. Lafitte.

. Pereverzev’s paraxial WKB and beam tracing.

. Generalizations to phase space and random media?

. Gaussian beams — O. Runborg.

. Eigenvalue problems for linearly unstable eigenmodes.

. Nonlinear eigenmodes? Which models? Which techniques?

. Distribution of wave field intensity — G. Tanner.

. Wave kinetic equation — N. Tronko.

. Beyond fusion: spiral galaxies, solar corona, plasma thrusters — A. Cardinali.
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