IN MEMORIAM

GRIGORY PEREVERZEV

A.G. PEETERS UNIVERSITY OF BAYREUTH

ESF Workshop (Garching 2013)

Research areas Grigory Pereverzev

- •••••
- Current drive in magnetized plasmas
- Transport (ASTRA transport code)
- Wave propagation in inhomogeneous anisotropic media including refraction and diffraction

Some definitions

Toroidal direction: the long way around the donut

Poloidal direction: the short way around the donut

Current drive efficiency

- A photon carries momentum and energy $E = \hbar \omega$ $p = \hbar k$
- Absorption (wave vector along the magnetic field) generates an electron energy and momentum $E_k = mv_{||}\Delta v_{||} \qquad p_k = m\Delta v_{||}$
- This momentum source generates a current that is reduced by the electron ion collisions

$$mn\frac{dv}{dt} = \frac{dN}{dt}p_k - mnv_{ei}(u_e - u_i)$$

Current drive efficiency

$$J_{||} = \frac{ep_k}{mv_{ei}} \frac{dN}{dt} = \frac{e}{mv_{||}v_{ei}} P$$

Figure: Schematic picture of the dependence of the current drive efficiency J/P as a function of the parallel velocity. Both low as well as high resonant velocities can lead to high efficiencies.

The problem: trapped particles

 Magnetic moment and kinetic energy are conserved

$$\mu = \frac{m v_{\perp}^2}{2B} \quad E = \frac{1}{2}mv_{||}^2 + \frac{1}{2}mv_{\perp}^2$$

- In a tokamak the magnetic field strength increases towards the inside of the torus
- Some particles are trapped and bounce back and forth in the magnetic well

 They do not carry any net averaged momentum

Most resonant particles are trapped

- Trapped particles occupy a region in velocity space for which the parallel velocity is small compared to the perpendicular velocity
- Because the phase velocity of the Alfven wave is small compared to the thermal velocity, most of the resonant particles are trapped.
- These particles can not carry the parallel current the wave is supposed to generate.

Figure: Trapped particle domain in velocity space. In red is indicated the Alfven wave resonance. Most of the particles that absorb energy from the wave are trapped.

Current drive efficiency reduced

- Assuming the trapped particles can not carry any current one finds a strong reduction in the current drive efficiency
 → Alfven wave current drive is not an acceptable scheme
- Is this correct? What about the transferred momentum. Is it simply lost?

Figure: Schematic picture of the dependence of the current drive efficiency J/P as a function of the parallel velocity including the effect of trapped particles. The efficiency at low resonant velocities is strongly reduced.

Radial excursion of the orbit

- Besides the motion along the magnetic field there is a small drift perpendicular to the field generated by a perpendicular force
- The mirror force leads to the grad B drift

$$F = -\mu \nabla B$$

$$\boldsymbol{v}_{d} = \frac{\boldsymbol{F} \times \boldsymbol{B}}{ZeB^{2}} = \frac{\mu}{Ze} \frac{\boldsymbol{B} \times \nabla B}{B^{2}}$$

 The drift leads to a small excursion from the surface

Figure: Schematic picture of a trapped particle orbit. Shown is the poloidal projection of the orbit.

Width of the orbit

 Width of the orbit can most easily be estimated using the conservation of canonical toroidal angular momentum

$$p_{\phi} = m v_{||} R - e \psi$$

 It follows that if you change the parallel velocity of the particle it shifts radially.

$$\Delta \psi = \frac{mR}{e} \Delta v_{||} = RB_p \Delta r$$

Figure: Schematic picture of the trapped particle orbit. When the parallel velocity is increased on the outboard side the orbit drifts inward.

The plasma is quasi-neutral

- If electrons are moved inward a second flow of charge is necessary to maintain quasineutrality
- This is provided by the polarization of the ions

$$F = q E \quad v_E = \frac{E \times B}{B^2}$$

$$\boldsymbol{F} = -\frac{m\boldsymbol{B}}{B^2} \times \frac{\partial \boldsymbol{E}}{\partial t} \quad \boldsymbol{v}_{pol} = \frac{m}{eB^2} \frac{\partial \boldsymbol{E}_{\perp}}{\partial t}$$

 Demanding neutrality one can solve for the radial electric field

Figure: Inward motion of electrons must be balanced by an inward motion of ions to preserve quasi-neutrality

Toroidal rotation trapped orbit

- The ExB velocity is (mostly) in the poloidal direction
- For a trapped particle this however leads to toroidal rotation
- Simple derivation from force balance

 $q\boldsymbol{E} + q \,\boldsymbol{\nu} \times \boldsymbol{B} = 0$

 Demand that the velocity is in the toroidal direction

$$E_r = v_{\phi} B_p$$
 $v_{\phi} = \frac{E_r}{B_p}$

Figure: A poloidal ExB drift for trapped particles leads to a toroidal rotation (that is in fact larger than the ExB velocity itself)

Parallel momentum to trapped electrons

Is transferred to a global motion of trapped ions and electrons around the torus

Momentum conservation?

- Using the above no momentum conservation is obtained. The polarization must be modified
- The averaged parallel velocity of trapped particles is nonzero

$$\langle v_{\phi} \rangle = \frac{E_r}{B_p} \gg v_E$$

 Averaging the canonical momentum over the orbit

$$\frac{mR}{B_p}\frac{\partial E_r}{\partial t} = e \frac{\partial \psi}{\partial t} = eRB_p v_{pol}^{Nc}$$

Figure: A poloidal ExB drift for trapped particles leads to a toroidal rotation (that is in fact larger than the ExB velocity itself)

Momentum conservation

Transfer momentum to a trapped electron leads to a radial shift of the orbit

$$m_e \Delta v_{||} \rightarrow \Delta r = \frac{m_e \Delta v_{||}}{e B_p}$$

An electric field builds up that moves trapped ions in the same direction

$$\sqrt{\epsilon}m_in_i\int v_{pol}^{NC} dt = rac{\sqrt{\epsilon}m_in_iE_r}{eB_p^2} = rac{m_e\Delta v_{||}}{eB_p}$$

The electric field that follows from the neutrality equation above corresponds to a total toroidal momentum in the trapped ion population of $P_i = \sqrt{\epsilon} m_i n_i \frac{E_r}{B_p} = m_e \Delta v_{||}$

Conclusions

Trapped particles reduce the current drive efficiency

- Parallel momentum given to trapped particles lead to a shift of the orbit in the radial direction
- An electric field builds up which can be calculated from the polarization if one demands neutrality
- The electric field rotates the trapped ions (an electrons) in the toroidal direction
- The momentum intended for current drive goes into an toroidal rotation of trapped ions
- On longer timescales collisional exchange between trapped and passing particles must be considered.
- To obtain exact momentum conservation one has to consider neo-classical effects in the polarization drift.