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Introduction

Non-Hermitian time evolution

h0w = H(t) , ImH = %(H M) £0

Systems with loss/gain: H = —h2A + V(t,x), Im V(t,x) # 0
absorbing potentials: ImV <0

complex scaling: complex eigenvalues/Resonances, escape
rates, .... .

If ImH < 0 and H t-independent: semigroup theory
PT-symmetry: V*(—x) = V(x), balance between gain and
loss, e.g., lasers. Eigenvalues are real or come in pairs E, E*.

non-hermiticity at principal symbol level, unlike damped wave
equation.
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Existence of time evolution

A= —h2A% + x| + 1,
HY = {4 [¥llhp = IN"Y]| 2 < oo}
Definition
H(t) : S(R") — S(R") is of type N if
(i) A"Y2H(t)A"Y? € B (B: set of bounded operators on L?)
(i) ik YA H()AN L eB
(i) ImH(t) < g(t), for some continuous g : R — R.

Examples:
e —h?A + V(x) is of type A if Im V(x) < C and

VI < €%, IVV(x)| < Clx)

e V(x) = ix3 not of type A.
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10:U(t,s) =H(t)U(t,s), U(s,s)=1

Theorem (RS, 2013)
Assume H is of type N, then U(t,s) : HY — H]" exists with

—s|l+L [to(¢)dr
A (t, s)l|pp < CeSmltmsltn Js 8D

and -
led(t, s)ll 2 < CenJs VI )] o .

Remarks:
e H(t) time-dependent, so resolvent methods do not work.
e instead proof works by approximating H by
He = (1 4+ eNY2)"VH(t)(1 + eAV/2) 1
e Can replace A by Op[A] for any order function A\ with
A e S(A).
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Semiclassical limit if ImH = 0: WKB vs Ehrenfest
WKB: = aetS insert in Schrédinger, H = Op[H]:

e 0:5(t,x)+ H(VS(t,x),x) =0, Hamilton Jacobi, solved using
Hamiltonian trajectories:

i—avha), o= (] ) =a W

e transport equation along (1) for a(t, x)
Ehrenfest theorem: If ¢(x), 1)(¢) localised near g and p, then

(¥(t), py(1)) (¥(t), x1(t))

Z(t) = (P(t)> Q(t))v P(t) = Hw(t)HZ ’ Hl/)(t)H2

Q(t) :=

satisfies (1) approximately.
If ImH # 0: complex trajectories from (1), but Z(t) € R” x R"
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Coherent states and their geometry

1/4 .
wg(x) = (de(tlhrr;B/Z/e}li[P'(X_Q)-‘ré(x—Q)‘B(X_Q)]
T n

e Z=(P,Q) e R" xR", B € M,(C) symmetric, ImB >0
e Wignerfunction

1 1, 76—
W(e) = e He 2602

B I 0\ /ImB]™* 0 I —ReB .
G_<7ReB /)( 0 ImB) (o I )Sympled'c

metric: GQG = (2, ¢ pure state with minimal uncertainty.

e Expectation values and variance:

(A)y = A(Z)1O(h)  (AAY = SVA(Z).GAVA(ZHO(#)
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Non-Hermitian Ehrenfest Theorem: coherent states

W(t,z) ~ & o H(z=20)6(0)-2()
up to O(Vh), if
Z=QVReH(Z)+G'VImH(2)
G =ReH"(2)QG — GQRe H"(Z)— Im H"(Z) + GQT Im H"(2)QG
= —2ImH(Z) - gtr[lm H"(Z)G™Y

e Expand H(z) up to second order around z = Z(t) (following
Hermitian case, Hepp '74, Heller '74). Exact if H quadratic.

e Hamiltonian and gradient part of dynamics of Z(t), coupled
dynamics for Z(t) and metric G(t)
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Example: Anharmonic oscillator with damping

0.2
@ >
-5 0 5
p
0.2 0.2 0.2
\ 0.1 Q 0.1 @ 0.1

-5 0 5 o1 -5 [ 5 o1 -5 0 5
P 3 P

-0.1
Figure: Normalised exact Wigner function (top row) and the semiclassical
approximation (bottom row) at different times (t = 0, 1, 2.5, 4). The
white line shows the motion of the center.

1 1
ReH =2(p"+ ")+ 5a*, ImH=—(p"+¢%), h=1

=
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Some complex symplectic geometry

e positive Lagrangian subspace L C T*C™: h(z,2) := 1Q(z,2')
is positive on L.
e J: T*R" — T*R" is a Q-compatible complex structure if
G = QJ is symmetric and positive definite, and J? = —/.
e Siegel upper half space
Y,:={B € M,C); BT =B,ImB > 0}:
Lg :={(Bx,x); x € C"} is positive Lagrangian iff B € ¥,,.
These three sets can be identified:
e define P, : T*C" — T*R" by P,(x + iy) := x + Jy then
L, := ker P, is positive Lagrangian.

« IfL— Ly, then J (—578 (/)) ([Img]fl m?s) ((I) —RIeB>

is a complex structure such that Lg = ker P,



Introduction  Non-Hermitian Ehrenfest Theorem  Complex structures and complex phase space  Complex WKB  Conclusions

Relation to complex trajectories: Quadratic case

(det Im B)'/*
(ﬂ.h)n/4
e Complex Structure: J = —QGg, 2=

e Heller, Huber, Littlejohn '88; Graefe, RS '12: complex centre
z = Rez+1ilm z equivalent to real centre Z = Rez + JIm z:

V7 (x) = GUZ(x)

P2 (x) =

o Exner '83, Hormander '95: 9(t,x) = e%”(tWi(tt))(x),

z(t) complex Hamiltonian trajectory
o Graefe, RS "12: If z(t)) complex Hamiltonian trajectory, then
Z(t) = Py(z) = Rez(t) + J(t)Im z(t) is Ehrenfest trajectory.
i—J
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Geometry: Global case

e Donaldson: (M,w,J) Kahler, H: M — C, is there a natural
way to define Hamiltonian symplectomorphism for complex H?

e Burns, Lupercio and Uribe (2013): Embed M in symplectic
complexification X with complex Lagrangian fibration

MN:X =M, Lyp:=N*m) complex Lagrangian
®f, : M — X Hamiltonian flow of H, Ly (t) = ®}(Lm),
Me: X = M, Ly (t) = Mgt (m(t))
o there exits a complex structure J; : TM — TM such that I1; is

holomorphic with respect to J;.
e we have

m = XgeH + JtXimH -

These are equivalent to previous Ehrenfest dynamics.
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Relation to complex trajectories: WKB

Assume H = |p|?/2 4 V/(x) real analytic, propagated state:

i

W(t,x) = A(t, x)er ()

e 0:S(t,x)+ H(VS(t,x),x)=0
o A(t, x) satisfies transport equation.
e Cauchy Kovalevskaya gives local existence of S, A.

Main observation:
[t x)[2 = |A(t, X)o7 m S0

main contribution to v (t, x) come from local minima of

Im S(¢, x).

How do critical points of Im 5(t, x) evolve in time?
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Evolution of critical points (H = 1|p|> + V(x))

o Assume 5(t, x) solves ;S + 3|V S(t,x)|? + V(t,x) =0
e Define Q(t), t € [0, T], by VIm S5(t, Q(t)) = 0 and set

P(t) :=VS(t,Q(t)) . B(t) = S"(t, Q(t))
Theorem
The functions (P(t), Q(t), B(t)) satisfy
P —-ReBQ = —ReBP — VRe V(t,Q)
ImBQ = ImBP — VIm V(t, Q)
B=-V"(t,Q)—B'B.

If Im B(t) is invertible then this system is equivalent to the
previous Ehrenfest system.



Complex WKB

local minima vs global behaviour

Lemma
Assume Im By > 0 and Im V" <0, then Im B(t) > 0.

e If Im V" <0 local minima propagate.

e behaviour of 9(t, x) is dominated by smallest local minimum.
=> Problem is not local.

e If ImSy =0, but Im V' a Morse function, then Im S(t, x)
develops local minima.

Questions:
e How are local minima created or destroyed?

e What happens for general Im V"'?



Conclusions

Summary and Outlook

We studied Schrodinger equation with non-Hermitian
Hamiltonian.
Two different semiclassical dynamics emerging:

e Ehrenfest Theorem: Mixed Hamiltonian and gradient flow with

coupled time dependent metric.

e Hamilton-Jacobi: Hamiltonian flow in complex phase space
Relation given by projection using complex structure
J=-QG:

i—J
Ehrenfest dynamics describes dynamics of critical points of
solutions to Hamilton Jacobi.
Open problems:

e Accurate remainder estimates: suitable function spaces and
a-priori estimates.
e Explore underlying complex symplectic geometry.
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