IPP Garching, ESF Exploratory Workshop

Weak turbulence in two-dimensional Magnetohydrodynamics

Natalia Tronko University of York, York Plasma Institute

In collaboration with

S.V.Nazarenko University of Warwick **S. Galtier** University of Paris XI

- Motivations: analytical methods for fluid models in plasma physics
- **Turbulence:** HD and MHD in 2D&3D: what is common and what is different?
- Wave-kinetic approach for 2D MHD model
- **Dynamics** of spectrum
- **Beyond WT** approach: qualitative picture

Fluid models for magnetized plasmas

Mesoscopic dynamical description

Uses calculation of the Vlasov distribution moments

$$n = \int d^3v \ f(\mathbf{x}, \mathbf{v})$$
$$\mathbf{u} = \int d^3v \ \mathbf{v} \ f(\mathbf{v}, \mathbf{x})$$

Requires closure: external condition, which allows to truncate the number of moments necessary for model consistency (incompressibility)

The incompressible MHD

$$\begin{aligned} (\partial_t + \mathbf{u} \cdot \nabla) \mathbf{u} &= \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{\mu_0} - \nabla \left(\frac{B^2}{2\mu_0}\right) - \nabla p \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times (\mathbf{u} \times \mathbf{B}) \\ \nabla \cdot \mathbf{B} &= \nabla \cdot \mathbf{u} = 0 \end{aligned}$$

Methods delivering analytical results:

•Wave-turbulence approach:

•Kinetic equation for spectrum

• Hamiltonian approach:

•Identification of exact invariants and systematic study of equilibrium stability

Interpretation and verification of numerical simulations

Validity of 2D MHD simulations
Explication of new equilibrium states identified numerically

Why studying incompressible 2D MHD model ?

Utility of the model:

•Very simple model: capturing basic mechanism of turbulence

•Development of new numerical methods: better resolution then in 3D

•Astrophysical and fusion plasmas purposes

Fundamental question:

• Do the 2D & 3D MHD turbulence exhibit similar behaviour?

Turbulence: Hydrodynamic and waves

Kolmogorov 1941: Hydrodynamic turbulence [Isotropic in 3D]

- 1. Local energy cascade: energy flux throughout the scales is generated by sequence of transfer between eddies of the same size
 - Direct cascade: energy transfer towards dissipation scales (small scales)
- 2. Inertial interval: faraway from forcing and dissipation energy transfer rate is defined by statistical properties of turbulence only
 - Universality for all scales
 - Independency from sources and dissipations
 15/10/2013
 IPP, Garching, ESF Exploratory workshop

Zakharov 1965 Similar behaviour for wave turbulence

Ideal invariants MHD/HD

716

MHD Invariants in 2D & 3DHD invariants in 3D
$$E = \frac{1}{2} \int (v^2 + b^2) d^n x$$
Direct cascade:
large scales
towards small
scales
3D & 2D $E = \frac{1}{2} \int |\mathbf{u}|^2 d^n x$ Direct cascade:
The 3D only $H^c = \frac{1}{2} \int \mathbf{A} \cdot \mathbf{v} d^n x$ Direct cascade:
large scales
towards small
scales
3D & 2D $H^k = \frac{1}{2} \int \mathbf{u} \cdot \boldsymbol{\omega} d^n x$ Direct cascade:
The 3D only $H^M = \frac{1}{2} \int \mathbf{A} \cdot \mathbf{b} d^3 x$ 3D
Inverse cascade
2D $H^k = \frac{1}{2} \int |\nabla \psi|^2 dx$ Inverse cascade
 $H^k = \frac{1}{2} \int |\nabla \psi|^2 dx$

MHD turbulence

MHD turbulence : exhibits strongly anisotropic states $k_{\perp} \gg k_{\parallel}$

Turbulent cascade in the direction perpendicular to background magnetic field B_0

•(1963) Iroshnikov & (1965) Kraichnan: $E_k \propto k^{-3/2}$ Isotropic wave turbulence in 3D (phenomenology)

Wave turbulence

Statistical description of a large ensemble of weakly interacting dispersive waves

• (2000) Galtier et al. : Anisotropic turbulence in 3D (wave-kinetic approach) $E_k \propto k_\perp^{-2}$

What are the main differences between the turbulent dynamics in 2D et 3D MHD ?

1)Numerical simulations: strong statements about similar behaviour.

2)Analytical results: verification by wave-turbulence approach 15/10/2013 IPP, Garching, ESF Exploratory workshop

Alfvén waves : 2D/3D

3D: leading order of small nonlinearity & strong anisotropy:

- SAW: three wave non-linear interaction, independent on PAW;
- PAW: scattering on SAW, no interaction between themselves;

2D: only PAW exist, how do they interact? 15/10/2013 IPP, Garching, ESF Exploratory workshop

II. Fourier transform

$$\mathbf{z}_{j}^{s}(\mathbf{x},t) = \sum_{\mathbf{k}} a_{j}^{s}(\mathbf{k},t)e^{i\mathbf{k}\cdot\mathbf{x}}$$

& Anisotropic limit

15/10/2013

$$\mathbf{k} = (k_x, k_y) = (2\pi m_x/L, 2\pi m_y/L)$$

Incompressibility condition $a_x = -\frac{k_y}{k_x}a_y$

 $k_u \gg k_x$

 $\hat{P}_*(\mathbf{k}) = -k^{-2} \sum_{\mathbf{k}_1, \mathbf{k}_2} \left(\mathbf{k}_2 \cdot \mathbf{a}^s(\mathbf{k}_1, t) \right) \left(\mathbf{k} \cdot \mathbf{a}^s(\mathbf{k}_2; t) \right)$

 $imes \delta \left(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}
ight)$

Wave-kinetic approach. I

- **1. Representation of interaction:** scales of motion separation:
 - Slow amplitude
 - Fast phase

$$\dot{c}_{k}^{\pm} = -i\epsilon \sum_{1,2} V_{k12} e^{\pm 2ik_{1x}t} c_{1}^{\pm} c_{2}^{\pm} \delta_{12}^{k}$$
$$V_{k12} \equiv V(\mathbf{k}, \mathbf{k}_{1}, \mathbf{k}_{2}) = \frac{(\mathbf{k} \cdot \mathbf{k}_{2}) [\mathbf{k}_{1}, \mathbf{k}_{2}]_{z}}{k \ k_{1} \ k_{2}}$$

$$a_x^s(\mathbf{k},t) = -i \ \epsilon \ \frac{k_y}{k} c_k^s \ e^{-i\omega^s t}$$

Small parameter designes linear and non-linear frequences separation

$$\epsilon = \frac{\omega_{nl}}{\omega_L} = \frac{b \ k_\perp}{B_0 \ k_{||}}$$

The approach is applied only if the small parameter can be defined

2. Itermediate time scale:

$$t_L \ll T \ll t_{nl}$$

$$t_L = 2\pi/\omega_L$$

- The turbulence is enough developed
- Far away from strong non-linearities

$$T = 2\pi/(\epsilon \; \omega_L)$$

$$t_{nl} = 2\pi/(\epsilon^2 \omega_L)$$

Perturbative series solutions

$$c_k^{\pm}(T) = c_k^{(\pm,0)} + \epsilon c_k^{(\pm,1)} + \epsilon^2 c_k^{(\pm,2)} + \dots$$

15/10/2013

Wave-kinetic approach. 📗

3. Energy spectrum:
$$E_k^{\pm}(T) - E_k^{\pm}(0) = \left\langle \left| c_k^{(\pm,1)} \right|^2 \right\rangle + \left\langle c_k^{(\pm,0)*} c_k^{(\pm,2)} \right\rangle + \left\langle c_k^{(\pm,0)} c_k^{(\pm,2)*} \right\rangle$$

The initial amplitudes-Gaussian independent variables Use Wick's rule:

$$\left\langle c_{k1}^{(\pm,0)} \ c_{k2}^{(\pm,0)} \ c_{k3}^{(\mp,0)} \ c_{k4}^{(\mp,0)} \right\rangle = \delta(k_1 + k_2) \delta(k_3 + k_4) \left\langle \left| c_{k1}^{(\pm,0)} \right|^2 \right\rangle \left\langle \left| c_{k3}^{(\pm,0)} \right|^2 \right\rangle$$
$$\left(c(k)^{(\pm,0)} \right)^* = c(-k)^{(\pm,0)}$$

•Infinite box limit $L \to \infty$

•Small non-linearity $T \to \infty$

At the intermediate time scale small comparing to physical one, we use:

$$\left(E_k(T) - E_k(0)\right)/T \sim \dot{E}_k$$

15/10/2013

Wave-kinetic approach. III

4. Wave kinetic equation for 3 waves interaction:

 $\dot{E}_{k}^{\pm}(k_{x},k_{y};t) = \pi\epsilon^{2} \int V_{k12}^{2} E_{1}^{\mp}(k_{1x}k_{1y};t) \left[E_{2}^{\pm}(k_{2x},k_{2y};t) - E_{k}^{\pm}(k_{x},k_{y};t) \right] \delta\left(\mathbf{k} - \mathbf{k}_{1} - \mathbf{k}_{2}\right) \delta(2\ k_{1x}) d\mathbf{k}_{1} \ d\mathbf{k}_{2}$

5. Anisotropic limit: $V_{k12} = \frac{(\mathbf{k} \cdot \mathbf{k}_2) [\mathbf{k}_1, \mathbf{k}_2]_z}{k k_1 k_2} \longrightarrow V_{12}^k = k_x$ $\frac{dE_k^-(k_x, k_y; t)}{dt} = \pi \epsilon^2 k_x^2 \int dk_{1y} \, dk_{2y} \, \delta(k_{1y} + k_{2y} - k_y) \, E_1^+(0, k_{1y}; t) \Big(E_2^-(k_{2x}, k_{2y}, t) - E_k^-(k_x, k_y, t) \Big)$

•The energy is conserved for each k_x

 $\partial_t \int E^{\pm}(k_x, k_y, t) dk_y = 0$

•Decoupling of parallel and perpendicular dynamics

•New « mixte » evolution parameter

$$\tau = \pi \epsilon^2 k_x^2 t$$

Separation of parallel and perpendicular spectrum

 $E(k_x, k_y; t) = \mu(k_x)\eta(k_y; t)$

I. Parallel spectrum: stationary behaviour $\mu(0) = 1$

II. Perpendicular spectrum dynamics:

$$\frac{\partial \eta^{-}(k_{y},\tau)}{\partial \tau} = \int_{-\infty}^{\infty} dk_{1y} dk_{2y} \,\delta\left(k_{1y} + k_{2y} - k_{y}\right) \eta^{+}\left(k_{1y},0\right) \left[\eta^{-}\left(k_{2y},\tau\right) - \eta^{-}\left(k_{y},\tau\right)\right]$$

Great simplification: Pseudo physical space

$$\mathcal{E}^{\pm}(y,\tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \eta^{\pm}(k_y,\tau) e^{ik_y y} dk_y$$

PDE for spectrum description $\frac{\partial \mathcal{E}^{-}(y,\tau)}{\partial \tau} = \mathcal{E}^{-}(y,\tau) \left(\mathcal{E}^{+}(y,0) - \mathcal{E}^{+}(0,0) \right)$

Mixte evolution parameter

 $\tau = \pi \epsilon^2 k_x^2 t$

What about locality of turbulence?

15/10/2013

I. Kolmogorov solutions

Forcing and dissipation

•Balanced turbulence case $\mathcal{E}^+ = \mathcal{E}^-$

•Forcing and dissipations

$$\frac{\partial \mathcal{E}(y,\tau)}{\partial \tau} = \mathcal{E}(y,\tau) \left(\mathcal{E}(y,0) - \mathcal{E}(0,0) + \sigma_d \right) + \mathcal{F}(y)$$

Main interest	: a)	small scales response	$k \gg k_f$	$k \gg k_0$
	b)	stationary solutions	$ au ightarrow \infty$	

Initial conditions

An example:

$$\eta(k_y, 0) = A\delta(k_y - k_0) + A\delta(k_y + k_0)$$

$$\mathcal{E}(y,0) = 2A\cos(k_0 y) \qquad \qquad \mathcal{E}(0,0) = 2A$$

I. Uniform friction

$$\partial_{\tau} \mathcal{E}(y,\tau) = \mathcal{E}(y,\tau) \ \left(2A\left[\cos(k_0 y) - 1\right] - \sigma_d\right) + \sigma_f e^{-\frac{k_f^2 y^2}{2}}$$

Inertial interval

The steady state solution

$$\mathcal{E}(y,\infty) = \frac{\sigma_f}{\sigma_d + \lambda y^2}$$

$$\xi = \sqrt{\frac{\sigma_d}{\lambda^2}}$$
No encascad
But glut ransfer
spectru
physice
space

$$k \gg k_0 \rightarrow \cos(k_0 y) = 1 - 1/2(k_0 y)^2 + \dots$$

 $k \gg k_f \rightarrow e^{-\frac{k_f^2 y^2}{2}} \approx 1$

$$\lambda = Ak_0^2$$

$$= \sqrt{\frac{\sigma_d}{\lambda^2}} \to 0$$

$$E(y, \infty) = \pi \frac{\sigma_f}{\sqrt{\lambda \sigma_d}} \delta(y)$$
At scales
$$y \gg \xi \Leftrightarrow k \ll \frac{1}{\xi}$$

$$\int \eta(k_y, \infty) = \frac{1}{2} \frac{\sigma_f}{\sqrt{\lambda \sigma_d}}$$
The steady state solution depends

The steady state solution depends on forcing, dissipation and initial conditions

II. Viscous friction:
stationary solutions:

$$\frac{\partial \mathcal{E}(y,\tau)}{\partial \tau} = 2A (\cos(k_0y) - 1) \mathcal{E}(y,\tau) + \nu \frac{\partial^2 \mathcal{E}(y,\tau)}{\partial y^2} + \sigma_f e^{-\frac{k_f y^2}{2}}$$
The change of variables

$$\tilde{y} = y \left(\frac{\lambda}{\nu}\right)^{\frac{1}{4}}, \tilde{\mathcal{E}} = \frac{\sqrt{\lambda\nu}}{\sigma_f} \mathcal{E}$$
The asymptotes

$$\tilde{y} \gg 1 \qquad \tilde{\mathcal{E}}(\tilde{y},\infty) = 1/\tilde{y}^2$$

$$\tilde{y} \ll 1 \qquad \tilde{\mathcal{E}}(\tilde{y},\infty) = C - \tilde{y}^2$$

$$\Pi (k_y,\infty) = C \sigma_f \left(\frac{\nu}{\lambda^3}\right)^{1/4}$$

$$k_0, k_f \ll k \ll k_\nu = (\lambda/\nu)^{1/4}$$

$$M_0 (k_f \ll k \ll k_\nu = (\lambda/\nu)^{1/4}$$

$$M_0 (k_f \ll k \ll k_\nu = (\lambda/\nu)^{1/4})$$

Absence of cascade; suppression of energy transfer on the small scales IPP, Garching, ESF Exploratory workshop

Can we construct a spectrum description beyond the wave-turbulence approach?

Qualitative approach

Arguments for qualitative approach construction:

•Three waves interactions are **never exactly resonant**

• Resonance broadening:

•The quasiresonant frequencies within the viscinity of the resonance are involved in wave-interactions

•Non-important in the case of smooth spectrum behaviour but accounts in the situation with strong gradients

•In the strong gradient zone: $\Delta k \sim k_x^*$ •Replace the delta-function by

smoothing function f(k_x)Acts a a filter for strong gradients

Spectrum behaviour beyond WT

Small scales: $k \gg k^*$

•Spectrum remains slowly varying •Kinetic equation can be amended with replacing the $\delta(2k_{1x}) = \delta(\omega_{1k} + \omega_{2k} - \omega_k)$ by $f(k_{1x})$ **Large scales:** $k \sim k^*$

•Breakdown of spectrum value conservation at $k_{||} = 0$

•Use $\eta(k_y, 0)$ change for the

↓

Gradient smoothing process

$$n^{\pm}(0, k_{y}, 0) = \int n^{\pm} (k_{1x}, k_{1y}, \tau) \,\delta(k_{1x}) dk_{1x}$$
$$(n^{\pm}) (k_{y}, \tau) = \int n^{\pm} (k_{1x}, k_{1y}, \tau) \,f(k_{1x}) dk_{1x}$$

Gradient smoothing process

Gradient smoothing process:

Four iterations towards spectrum stabilization:

•Point 1: The gradient of the spectrum in the viscinity of k_{||} = 0 is positive; the initial value increases and reaches
• Point 2: it crosses the max and moves at
•Point 3 with negative slope of spectrum; The initial value decreases and arrives at the Point 4;

•This process takes place until spectrum is stabilized

Wiping out of the k_x dependence by self-similar shrinking of spectrum

Summary of spectrum evolution

(Fixed k_y)

• The early stage: $t \ll (k_x^*)^{-2}$ evolution is described by three wave kinetic equation

• The advanced stage: $t \sim (k_x^*)^{-2}$ the kinetic equation is broken down by its own evolution

•Large time scales: $t \gg (k_x^*)^{-2}$

• smoothing of strong gradients in $k_{||} = 0$

• re-emergence of the kinetic equation with steady state

 $\eta(k_y, 0) = \eta(k_y, \infty)$

The wave-kinetic equation for the steady state

Re-established wave-kinetic equation on the pseudo-physical space

$$\mathcal{E}(y,0) = \mathcal{E}(y,\infty) = \mathcal{E}(y)$$

$$\mathcal{E}^{2}(y) - \mathcal{E}(y) \left(\mathcal{E}(0) + \sigma_{d}\right) + \mathcal{F}(y) = 0$$

$$\downarrow$$
Initial value is defined by the equation itself
$$y = 0 \Rightarrow \mathcal{E}(0) = \mathcal{F}(0)/\sigma_{d}$$

$$\mathcal{E}(0) = \int \eta(k_{y})dk_{y} > 0$$

$$\downarrow$$

$$\mathcal{E}(y) = \frac{1}{2} \left(\sigma_{d} + \mathcal{F}(0)/\sigma_{d}\right) \pm \frac{1}{2} \left(\left(\sigma_{d} + \mathcal{F}(0)/\sigma_{d}\right)^{2} - 4\mathcal{F}(y)\right)^{1/2}$$

No inertial range because the steady state width directly depends on forcing width. Strongly non-local interaction;

$$\mathcal{E}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \eta^{\pm}(k_y) e^{ik_y y} dk_y$$

15/10/2013

Steady state solution at the small scales

$$\mathcal{E}(y) = \frac{1}{2} \left(\sigma_d + \mathcal{F}(0) / \sigma_d \right) \pm \frac{1}{2} \left(\left(\sigma_d + \mathcal{F}(0) / \sigma_d \right)^2 - 4 \mathcal{F}(y) \right)^{1/2}$$

Decaying forcing (i.e.Gaussian) $- \mathcal{F}(0) < \sigma_d + \mathcal{F}(0) > \sigma_d$ $\lim_{y \to \infty} \mathcal{F}(y) \to 0$ $\lim_{y \to \infty} \mathcal{E}(y) \to 0 \qquad \lim_{y \to \infty} \mathcal{E}(y) \to \sigma_d + \mathcal{F}(0) / \sigma_d$ Condensation into the state with delta function at $k_y = 0$ Physically meaningful situation: dissipation dominates forcing at small scales: no delta function on physical space; Flat spectrum solutions; suppression of energy transfer on small scales

Conclusions

- Simple structure of the wave-kinetic equation in 2D: analytical investigation of spectrum dynamics
- Comparaison with 3D case
 - Absence of turbulence locality:
 - Absence of Kolmogorov-like solutions
 - Global energy transfer in two limiting cases: uniform friction and viscous friction; no energy cascade
 - Should be verified via DNS
 - Beyond wave-turbulence
 - Qualitative approach
 - Breakdown of wave-kinetic equation due to the self-similar dependence on parallel spectrum
 - Re-emmergence of the wave-kinetic equation at the large time scales
 - No energy cascade
- More details [Tronko et al, PRE 2013]