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Outline 
•  1) Plasma Thruster 

–  HPH.com project (www.hphcom.eu/index.shtml) 
–  Helicon Plasma Source concept 

•  3) Mathematical model 
–  Maxwell-Vlasov system of equations 
–  Cold plasma approximation 
–  Collisional Damping 

•  4) Asymptotic analysis of the equation system and solution 
–  Lowest order  phase reconstruction 
–  First order amplitude or wave energy deposition 

•  5) Numerical results and discussion 
•  6) Conclusions 
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Helicon Plasma Hydrazine.combined-micro (HPH.COM) 1/2 
 

•  The aim of the HPH.com project is to develop a space plasma thrusters based on helicon 
plasma sources. 

•  The great innovation of this technology lies on its extreme scalability, that allows it to be used 
•  For small pushes in the position control and satellite-formations attitude, 
•  for the primary propulsion for interplanetary probes. 

•  The uniqueness of the project lies in developing an engine that can operate in high-efficiency / 
low-thrust with only plasma and plasma-hydrazine in the way of low-efficiency / high-thrust. 
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Target Performances 
Mode I 
Plasma  Mode II 

Plasma + 2nd Prop 

Power(W) 50 W 50 

Thrust (mN) 1.5 mN 20 mN 

Isp (s) >1200 >400 
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Helicon Plasma Hydrazine.combined-micro (HPH.COM) 2/2 
 
• Objective of this research program is to significantly 

improve knowledge on helicon-based plasma 
thruster 

•  through deep numerical/theoretical investigation, 

•  through an extensive experimental campaign, 

•  through the utilization on board a mini-satellite 
for attitude and position control. 



Helicon Plasma thruster (1/3) 
•  A Helicon Plasma Thruster or plasma propulsion engine is a type 

of thruster which uses plasma in the thrust generation process. 

•  A Helicon Plasma Thruster is comprised of 
–  (1) Ar/N2 gas feeding system, 
–  (2) RF antenna, 
–  (3) magnetic coils 
 

•  The RF antenna ionize the neutral gas and heat the resulting 
plasma via plasma-wave electromagnetic interaction processes. 

•  Magnetic coils generate divergent magnetic field lines at the 
exhaust providing a magnetic nozzle effect to focus and accelerate 
the plasma away from the rocket engine. 
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THE MAGNETIC NOZZLE: Simply stated, a magnetic nozzle converts 
thermal energy of a plasma into directed kinetic energy. This conversion is 
achieved using a magnetic field contoured similarly to the solid walls of a 
conventional nozzle.  
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Introduction

Simply stated, a magnetic nozzle converts thermal energy of a plasma into directed kinetic energy. This conversion is
achieved using a magnetic field contoured similarly to the solid walls of a conventional nozzle (see, for example, Fig. 1).
The applied magnetic field in most cases possesses cylindrical symmetry and is formed using permanent magnets or
electromagnetic coils, which confines the plasma and acts as an effective “magnetic wall” through which the thermal
plasma expands into vacuum. Applications include laboratory simulations of space plasmas, surface processing, and
plasma propulsion for spaceflight.

Figure 1. Magnetic Nozzle Schematic

Magnetic nozzle research at the EPPDyL began in 2008. The goal of this research is to understand the fundamental
physical processes of the plasma flow through the nozzle and their impact on the nozzle performance. Specifically, we are
working towards answering the following important questions:

How do the dynamics of the plasma flow through the magnetic nozzle influence the exhaust plume
structure?

How is the exhausted plasma affected by the relationship between the physical and magnetic goemetries?

How does the magnetized plasma detach from the applied magnetic field?

These questions will be answered through a combination of theoretical, experimental, and computational research.
Ultimately, knowledge of these processes will yield fundamental scaling laws for the performance of magnetic nozzles for
plasma propulsion.

Theory

We are developing theoretical models to study the relationship between the plasma dynamics in the magnetic nozzle and
the structure of the exhaust plume. The structure of the exhaust plume is important to the overall propulsion performance

Helicon Plasma thruster (2/3) 



THE SOURCE: the plasma source is a Helicon plasma where the confinement 
magneto-static field is directed ALONG THE AXIS and in principle is 
UNIFORM AND CONSTANT (THIS IS NOT TRUE in actual plasma thruster 
configuration making the problem of the electromagnetic-plasma interaction to be 
intrinsically 3D). The RF antennas excite a Whistler waves at a frequency of 
13.56 MHz (HPH.com). The electric field polarization is	   Eθ/Er	   and the 
dispersion relation is  
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Helicon Plasma thruster (3/3) 
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Mathematical model of the plasma-electromagnetic wave interaction in 
the thruster in presence of an external magnetic field structure 

•  The equation system which describes the coupling,  propagation and absorption 
of the whistler wave in a cold collisional plasma in presence of an external static 
magnetic field is the following integro-differential system of equations for the 
electric field 

•  The hypothesis made in obtaining this system to start from the Maxwell-Vlasov 
equation are: 
–  Cold plasma 
–  Linearization of the fluid model 
–  Inclusion of very simple collisional model (Krook) 
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Mathematical model 1	  
•  Considering that both electron-ion density and external magnetic 

field does not depend on time (steady state condition), the system 
above simplifies considerably. 

•  The perturbation quantities can be considered harmonic in 
time ~e-‐iωt	   

•  The equation system lost the integro-differential character, and 
becomes a vector partial differential equation of the second order 
for the electric field components 

•  Where               is the mobility tensor and it depends on the 
frequency and locally on space! 
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Mathematical model 2	  
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Mathematical model and solution 3	  

•  To solve the vector partial differential equations with given 
boundary conditions (fixed by the antenna current distribution) is a 
cumbersome task owing to the 3D geometry (cylinder + nozzle). 

•  The main plasma parameters are 

–  Plasma frequency which in turns depends on the plasma density which 
depends on 2D space 

–  Cyclotron frequency which depends on the external magneto-static field,                       
which in turns depends on 3D space 

 

•  And they are depending on 3D space coordinate, at least on 2D. 

11	  

B r,θ, z( )

n r, z( )



Mathematical model and solution 4	  

•  Analytical and numerical solution can be given only in very 
simple situation in which the density depends only on the radial 
coordinate and the external magnetic field is uniform inside the 
cylinder chamber. 

•  In more complex situation both numerical and analytical 
approaches cannot be carried out. We propose, an analytical 
treatment of the wave equation which is based on the asymptotic 
expansion (WKB Ansatz) 
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Mathematical model and solution 5	  
•  If we use the above representation for the field and we insert it in 

the wave equation, we got a series of first order partial differential 
equation for the function Sn. 

•  The first two functions S0 and S1 have an immediate physical 
meaning: 
–  S0 is the wave phase surface function 
–  exp(iS1) is the wave amplitude 

•  Obviously it is necessary to check that the following condition 
remains verified 

•  Essentially this means that the wavelength of the propagating wave 
is much smaller then the typical scale length of the amplitude 
variation. 
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Mathematical model and solution 6	  
•  After substituting the WKB ansatz in the wave equation, a non-

linear partial differential equation for the function S0 at the 
lowest order results. The solution can be obtained by the method 
of characteristics (ray-tracing)	  
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Mathematical model and solution 7	  

•  Incidentally, the ray tracing equations (which are a system of 
ordinary differential equations of the first order) are formally 
equivalent to the Hamilton’s equation of the classical 
mechanics, and the non linear partial differential equation for 
the function S0 is equivalent to the Hamilton-Jacobi equation. 
The Hamiltonian results to be 

•  The wave dispersion relation 
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   H ≡ A r , ∇||S0( )∇⊥S0
4 + B r , ∇||S0( )∇⊥S0

2 +C r , ∇||S0( ) = 0



Mathematical model and solution 8	  

•  At the successive order in h we obtain a partial differential 
equation of the first order for S1. This amplitude transport 
equation can be recast in an equation for the wave power 
transported along the trajectory, which satisfies the “Poynting 
theorem”.  
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2

2. WKB ASYMPTOTIC EXPANSION OF WHISTLER WAVE EQUATION

As far as the the whistler propagation is concerned, the plasma wave interaction described by
the Maxwell-Vlasov system of equations can be simplified by making the hypothesis that the field
amplitude is su⇤ciently small to justify the linearization of the kinetic equation [6]; additionally,
the physics of wave propagation and absorption is well described in the cold plasma limit, thus the
wave equation for the electric field reads:

⌃ (⌃ ·E (r))�⌃2E (r)� ⌃2

c2
⌥H ·E (r) =

⌃2

c2
i⌥A ·E (r) (1)

where r = (r, ⇤, z) is the position, ⌥H and ⌥A are the Hermitian and anti-Hermitian parts, respec-
tively, of the dielectric tensor [6]. It is worth recalling that the dielectric tensor depends upon the
local confinement magnetic field, plasma density, and collision frequency.
Eq. 1 is solved asymptotically via the WKB method. At the lowest order in the expansion, we have
the Ray-Tracing equations
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where ⇥0 = ⌃ac�1 is the expansion parameter, a is the plasma radius, kc/⌃ = (nx,m, nz) are the
components in cylindrical coordinate of the wave-number, the normalized coordinates along the
radial and axial directions are (x = r/a; ẑ = z/a), ⇧ is the variable along the wave trajectory, ⌃ is
the frequency given by the exciting antenna, S0 is the wave phase.
Eq. 2 provides the characteristic curves that define a bundle of trajectories in the phase space (r,k),
with k the wave vector. The function H

�
r, n||, n?
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�
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�
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⇥
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is the cold electromagnetic dispersion relation, where n? = ⌃?S0 and n|| = ⌃||S0 are the perpen-
dicular and parallel (with reference to the external magnetic field) components of the wave-number,
respectively. Coe⇤cients in Eq. 3 are a combination of the dielectric tensor elements.
At the next order in the WKB expansion, we have a partial di�erential equation for the wave
amplitude |A0|, which is cumbersome and di⇤cult to solve. As shown in [5], it is more convenient
to write the Poynting Theorem for the wave energy conservation starting from the WKB amplitude
equation, then integrating it over the plasma volume; we have the Power damping equation

dP

dt
= �2�new (r,k,⌃)P , P =

⌃

16⌅

⇤
d⇥ · ⌦H (k,⌃)

⌦k
|A0|2

�new (r,k,⌃) =
e⇤0 · ⌥A (r) · e0
⌦H (k,⌃) /⌦⌃

(4)

where P is the power carried by the single ray, �new is the power damping rate (in s�1) accounting
for Landau and collisional damping, e0 = E/|E| is the electric field unit vector. Eqs. 2-4 represent
the Ray-Tracing and Power damping equations, and they are an ensemble of independent initial
value problems, whose initial conditions give the starting wave vector and power at each point of
a reference surface of the propagating wave. The integration of these equations requires initial
conditions for (r,k) on an initial reference surface (�,S0|�), which is the image of the launching
wave antenna on the plasma boundary, where the variation of �new can be assumed negligible. We
solved Ray-Tracing and Power damping equations numerically by means of Hamming’s modified
predictor-corrector method; we used a fourth order Runge-Kutta method suggested by Ralston to
adjust the initial increment, and to compute the starting values for the non self-starting predictor-
corrector method. During the simulation, we verified that WKB hypotheses are satisfied, namely:



Numerical solution of the WKB ordinary differential 
equations: application to HPH.com plasma thruster	  

•  We considered three different configurations for the wave propagation and 
power deposition analysis: 
–  (a) 2D confinement magnetic field and 1D radial density profile, 
–  (b) 2D confinement magnetic field and 2D density profile, 
–  (c) axial, uniform and constant confinement magnetic field and 1D radial density 

profile (helicon case). 

•  These configurations have been reported in Tab. 1. Each test label is used as 
label for the curves in the following pictures. 
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3

(i) the wavelength of the propagating mode is much less than the characteristic scale length, (ii)
absence of di�raction e�ects in the wave propagation.
The solution of Eqs. 2-4 allows for information on the wave propagation and power deposition in a
general 3D geometry which accounts for the 3D coordinate dependence of the external confinement
magnetic field structure and 2D (radial and axial) plasma density profiles.

3. WAVE PROPAGATION AND POWER DEPOSITION ANALYSIS

We considered an actual plasma thruster made of a cylindrically-shaped plasma source with plasma
radius a = 10 cm, and axial length L = 40 cm. The confinement magnetic field is provided by means
of a solenoid wrapped around the plasma cylinder, and fed by a current resulting in a magnetic
field on the axis B0 = 0.025 T. We assumed a parabolic density profile along the radial direction,
and a Gaussian density profile along the axial direction

n (x, ẑ) = n0

�
1� (fax)

2
⇥
e�ẑ2

(5)

where fa =
⇤

1� nedge

n0
, with n0 = 1018 m�3, nedge = 5⇥1017 m�3. The electron (ion) temperature

is uniform Te = 3 eV (Ti = 0.1 eV); the neutral pressure is pn = 10 mTorr (introduced via Krook
model). The antenna excited an azimuthal mode m = 0 at a frequency f = 13.56 MHz, and
30 ⇤ nz < 90 is the propagative axial spectrum allowed by the plasma parameters chosen. The
analytical expression available for plasma density profiles and magneto-static field allow for the
evaluation of derivatives in Eq. 2.
We considered three di�erent configurations for the wave propagation and power deposition analysis:
(a) 2D confinement magnetic field and radial density profile, (b) 2D confinement magnetic field and
2D density profile, (c) axial, uniform and constant confinement magnetic field and radial density
profile (helicon case). These configurations have been reported in Tab. 1. Each test label is used
as label for the curves in the following pictures.

Label Density profile Confinement magnetic field
a) radial Br (r, z) er +Bz (r, z) ez
b) radial & axial Br (r, z) er +Bz (r, z) ez
c) radial B0ez = const

Table 1: Test cases considered. er and ez are the unit vectors along the radial and axial directions.

3.1. Discussion on wave propagation properties

The axial wavenumber nz, the parallel wavenumber n||, the perpendicular wavenumber n⇥ have
been plotted as a function of the radial normalized variable x in Figs. 1(a),(b),(c), when the fast
wave with m = 0 and nz = 30 is launched at the plasma edge. Consider the axial component of the

(a) (b) (c)

Figure 1: (a) axial, (b) parallel, (c) perpendicular components of the wavenumber along the radial normalized
variable x for cases a),b),c).
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The axial wavenumber nz evolution: 

Numerical solution of the WKB ordinary differential 
equations, and results: wavenumber evolution	  

!

4

(a) (b) (c)

Figure 1: (a) axial, (b) parallel, (c) perpendicular components of the wavenumber along the radial normalized
variable x for cases a),b),c).
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Figure 2: Power damping along x, for (a) case a), (b) case b). Power deposition profile in arbitrary unit
along x, for (c) case a), (d) case b).

the power damping is pictured for a ray path such that the wave gets reflected radially and gets
back to x � 0.94. Two particular points can be identified. The first one is around x � 0.33 where
the wave is reflected radially. The second point is at x � 0.45 where the fast wave couples to a slow

In the c) case (red line), the axial 
wavenumber remained constant 
inside the plasma. In a) (blue line)  
and b) (black line) the magnetic 
field induces a variation of the 
axial wavenumber along the ray. 
 
In the case a), after a radial 
reflection, an axial resonance 
appears near the plasma edge, 
while in the case b) the resonance 
appears just after the radial 
reflection. 
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the parallel wavenumber n|| 

Numerical solution of the WKB ordinary differential 
equations, and results: wavenumber evolution	  

The parallel wavenumber shows 
the same behavior: 
c) case (red line), the parallel 
wavenumber remained constant 
inside the plasma. 
a) (blue line) and b) (black line) 
the magnetic field induces a 
v a r i a t i o n o f t h e p a r a l l e l 
wavenumber along the ray.  
In the case a) and b) a resonance is 
met in parallel direction 

!

4

(a) (b) (c)

Figure 1: (a) axial, (b) parallel, (c) perpendicular components of the wavenumber along the radial normalized
variable x for cases a),b),c).
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Figure 2: Power damping along x, for (a) case a), (b) case b). Power deposition profile in arbitrary unit
along x, for (c) case a), (d) case b).

the power damping is pictured for a ray path such that the wave gets reflected radially and gets
back to x � 0.94. Two particular points can be identified. The first one is around x � 0.33 where
the wave is reflected radially. The second point is at x � 0.45 where the fast wave couples to a slow
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the perpendicular wavenumber n⊥ 

Numerical solution of the WKB ordinary differential 
equations, and results: wavenumber evolution	  

In the c) case (red line), the 
perpendicular wavenumber varies 
weakly along the plasma radius. 
In a) (blue line) and b) (black 
line) the magnetic field structure 
induces a strong variation of the 
perpendicular wavenumber 
during the wave propagation. 
In the case a), after a radial 
reflection, a cut-off appears near 
the plasma edge, while in the 
case b) the cut-off appears just 
after the radial reflection. !

4

(a) (b) (c)

Figure 1: (a) axial, (b) parallel, (c) perpendicular components of the wavenumber along the radial normalized
variable x for cases a),b),c).
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(c) (d)

Figure 2: Power damping along x, for (a) case a), (b) case b). Power deposition profile in arbitrary unit
along x, for (c) case a), (d) case b).

the power damping is pictured for a ray path such that the wave gets reflected radially and gets
back to x � 0.94. Two particular points can be identified. The first one is around x � 0.33 where
the wave is reflected radially. The second point is at x � 0.45 where the fast wave couples to a slow



Numerical solution of the WKB ordinary differential equations, and results: 
power damping rate and power deposition profiles	  
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•  In this figure the power damping is pictured for 
a ray path such that the wave gets reflected 
radially and gets back to x≈1 (edge). Two 
particular points can be identified. 
•  The first one is around x≈0.3 where the 

wave is reflected radially. 
•  The second point is at x ≈ 0.5 where the 

fast wave couples to a slow wave. 
•  At the second point, the power damping curve 

changes its slope, and this is related to the 
different ways the slow and the fast wave 
modes deposit energy into the plasma. 

•  This feature becomes even more evident in the 
figure below, where the power deposition 
profile is pictured for the same case of the 
above  figure.  

4

wavenumber as shown in Fig. 1(a). In the c) case, the axial wavenumber remained constant inside
the plasma as expected by Eq. 2. In a) and b) the magnetic field induces a variation of the axial
wavenumber along the ray. In the case a), after a radial reflection, an axial resonance appears near
the plasma edge, while in the case b) the resonance appears just after the radial reflection.
Consider the parallel and the perpendicular (to the external magnetic field) components of the
wavenumber as shown in Fig. 1(b),(c). The waves corresponding to curves a) and b) feel the
parallel resonance n|| ⇥ ⇤, while on the same location the perpendicular wavenumbers show a
cut-o� n� ⇥ 0. The occurrence of the resonance and cut-o� is located around x � 0.95 for the case
a) and x � 0.6 for the case b), respectively. No resonance or cut-o� occurs for the case c), where
the excited whistler wave propagates towards the plasma center without changing the polarization,
and no singular points are met.

3.2. Discussion on power deposition properties

We discuss the wave absorption features related to cases a) and b). At the plasma edge, the fast
wave is launched with m = 0 and nz = 30 with P0 power; along the trajectory, the power damping
P/P0 gives the percentage of the power the wave is actually carrying, while the amount of power
missing from the edge value is the percentage of the power absorbed by the plasma. The power
deposition profile gives the power density deposited by the wave along the trajectory. In Fig. 2(a),

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
ow

er
 d

am
pi

ng

0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

x

P
ow

er
 d

am
pi

ng

(a) (b)

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

x

P
ow

er
 d

ep
os

iti
on

 p
ro

fil
e 

[a
.u

.]

0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

x

P
ow

er
 d

ep
os

iti
on

 p
ro

fil
e 

[a
.u

.]

(c) (d)

Figure 2: Power damping along x, for (a) case a), (b) case b). Power deposition profile in arbitrary unit
along x, for (c) case a), (d) case b).

the power damping is pictured for a ray path such that the wave gets reflected radially and gets
back to x � 0.94. Two particular points can be identified. The first one is around x � 0.33 where
the wave is reflected radially. The second point is at x � 0.45 where the fast wave couples to a slow
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•  We discuss the wave absorption features related to cases a). 
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Figure 2: Power damping along x, for (a) case a), (b) case b). Power deposition profile in arbitrary unit
along x, for (c) case a), (d) case b).

the power damping is pictured for a ray path such that the wave gets reflected radially and gets
back to x � 0.94. Two particular points can be identified. The first one is around x � 0.33 where
the wave is reflected radially. The second point is at x � 0.45 where the fast wave couples to a slow

•  In this figure the power damping has been 
pictured for a ray path such that the wave 
gets reflected radially and gets back up to x 
≈ 0.6. 

•  From the figure just one particular point can 
be identified, which is at x ≈ 0.5, where the 
wave is reflected radially. 

•  There is actually another point at x ≈ 0.9, 
where the fast wave launched at the edge 
couples to a slow wave. 

•  This feature is not easily visible on the 
figure, where there is no clear change in the 
slope of the power damping curve; however, 
it can be clearly recognized in the jump in 
the power deposition profile showed in the 
figure below. 

•  After the mode conversion, the slow wave is 
rapidly damped by collisions before 
reaching the axis. 

•  We discuss the wave absorption features related to cases b). 



Conclusions 
•  We developed a three-dimensional Ray-Tracing solver called RAYWh, and we used it to study 

- for the first time - the whistler propagation and power deposition in a cylindrically-shaped 
plasma source for space plasma thrusters, where realistic density profiles and confinement 
magnetic field lines can be readily included without any approximation. 

 
•  Previous approaches cannot provide accurate information on the power deposited into the 

plasma, when real thruster setups are considered. Indeed, magnetic confinement 
configurations in actual HPTs can depart from the simplified Helicon one, due to dimension, 
mass and power budget limitations, leading to different power coupling levels into the plasma, 
and resulting in different propulsive characteristics. 

•  Unlike the helicon case, parallel and perpendicular wavenumbers changed during the 
wave trajectory leading to a completely different propagative picture, when actual 
confinement magnetic configurations and plasma density profiles are considered. 
–  Unexpected cut-offs, resonances, radial reflections, and mode conversions of the excited 

waves have been found, as a result of the confinement magnetic field along with variation 
in the plasma density the waves encountered. 

–  These in turn influenced the power deposition phenomena. The results are relevant for 
space thruster applications, but they can be fruitfully employed in industry plasma 
sources as well for the identification of the best source configuration, thus providing the 
maximum power transfer from the RF antenna to the plasma. 
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