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Discrete Flow Mapping
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response of mechanical structuresat mid-to-high frequencies
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Aim: Predicting thewave intensity distributions for the vibro-acoustic
response of mechanical structuresat mid-to-high frequencies

-> general tool for ray-tracing algorithms on meshes

Outline of the talk

* From wavesto rays—ray-tracing with linear operators

* Numerical implementation of ray tracing algorithms:
Dynamical Energy Analysis and Discrete Flow M apping

* Examples. Applicationsin the ship industry (Germanischer Lloyd),
car industry (Land Rover Ltd) and aviation industry (EADS & Airbus).
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|. Background and Method
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‘ ﬁlnear wave ﬁynamms: ‘

. 2
Point source (_8— - H) G(r,roit) = &(ro —r)d(t);

(w?* — H) G(r,rg;w) = 0d(rg—r)

with H = —AA Helmholtz Eqgn.

Acoustic Wave Eqgn.

Biharmonic Egn.

Navier-Cauchy Eqgn.
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Numerical M ethods:;

L ow Freguencies. (wave length ~ object size; L ~ 1m ... f <0.5-1.0 kHz)
* Finite Element Method

* Boundary Element M ethod

* Spectral Methods

High Frequencies. (wave length << object size; L ~1m ... f > 1-5 kHz)
- Statistical Energy Analysis (SEA) ] Not based

» Ray Tracing on meshes!

* Dynamical Energy Analysis (DEA)

FEM Midfrequency Gap SEA

Freguency
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Ray Tracing:

e T reflector

g Qphr:u*al diffuginn 407

~ " False normal 10°

=T Cancave cylinder
Radius equal to room height

http://www.akustikon.se/eng/software_e.html

source receiver|| source receiver

Applications:
Acoustic, geometric optic, computer graphics,

Contains full information about geometry
— inefficient for multiple reflections, complex
structures, ... = many different paths
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) Force
w==) Transfer path

Acoustic signal
(interior)

Transfer Path in *’Body in White'”’ | =l

i Courtesy Land Rover Ltd
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Linear Wave Equation: ( O?

i H (r, V)) U(r)=20
U = Aexp(iwS)

Hamilton — Jacobi Egn: Stg —H(r,VS) =0

Transport Egn for A(r) driven by phase S

Hamilton Equations: r= V,H(rp)
(Characteristics of HJ; .

non-linear ODE) p=—V.H(r,p) p=VS
Liouville Equation: 0 + X Vp=0 X=(p)
(linear)

L A
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SU10I L Wwadave 1e1dtr asvinotd
for Green function

k=w/c>>1/L
(L = typical lengthscale)

G(T, To, (,L)) = C Z AJGZ f d,r./kj (T/,w)—’il/j %

Jiro—r
with j : sum over rays from rq — r
T 1
¢ = amEe
Aj = A§9)A§-d) ki(r,w) : local wavelength
T T v; : Maslov index

g
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SU10I L Wwadave 1e1dtr asvinotd
for Green function

k=w/c>>1/L
(L = typical lengthscale) source receiver
G(r,ro,w) = C Z AjetJdrki(rw)—iv; 3
Jiro—T
with j : sum over rays from rq — r
7 1
c = — .
o (2m) @2
d
Aj = A§Q)A§ )A§-C) ki(r,w) : local wavelength

T mOde conversion v; @ Maslov index
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€ro(Tyw) w2|G('r, 'ro,w)|2

~ Y AjAy eSS )3

j,j,l’l"o—>7"

p(r,rg,w) + off-diagonal terms

with

p(r,ro,w) = Z |Aj|2 Diagonal Approximation
~ RAY TRACING

J:iro—T
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p(r,ro;w / dT/dp/dX’ )0 (X — @™ (X)) po(X;w)
with initial density L(X , X") : Frobenius-Perron
at
0(X'sw) = 8(r' — 19)d(w? — H(X")), opErEst
X(1) = ¢ (X' phase space flow: propagating for time

T; solution of —in general — nonlinear ODE

X = (r,p) phase space coordinates;
k: wave vector, momentum

w(X, ’7') weight function - multiplicative
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‘!!!‘!l H! !5 |!!! ‘ X = !T,p!

/ dr [ ap / aX w(X',7)8 (X — ¢ (X)) po( X' )

J

L(X,X") : Frobenius-Perron

operator
p(r,ro,w) : Density of rays starting
uniformly in rg with
H(rg,p) = w*
s and reaching r including
souree receiver absorption

Classical ray tracing = following individual trajectories
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Ray Tracing In termsof integral equations:

Ray density p(X, p) = linear integral equation:
I.e. Rendering Equation (Computer Graphics), Radiosity Equation (Acoustics)

p(X,t) = /dX’ LIX,X't) p(X",0); X = (r,p)

with linear integral kernel: ,C(X, X’,t) — ) (X o SOlt()(/))

(Frobenius-Perron operator)

Ray dynamics: Spt(X/) = X(t); X(0) = X'’

DEA: Finite Volume M ethod for solving the integral equation!
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Numerical solution methods solving for p(X, 7)or p(X,w)

Integral Equation p(X,7) = /dX’ L(X, X" 1)p(X',0)
Admits non-smooth solutions: Ergodic theory

Liouville Equation — differential form:

_Sm_oot_h solutions— extensions: viscogsLE 0 + X V,O _ DAp — 0
in l[imit D> 0 (Fokker-Planck Equation)

Characteristics — ray-tracing:
Solutions constant along characteristics = classical trajectories;
Boundary value problem, small sampling problem

Markov approximation — Ulam method, Statistical Energy Analysis
Transition probabilities between cellsin phase space
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Statistical Energy Analysis:

* divide system into substructures

* determine average transmission/
reflection coefficients

Thermodynamic approach

Ennes Sarradj: www.tu-
cottbus.de/fakultaet3/fileadmin/uploads/aeroakustik/files/sarradj
_sea_daga2004.pdf

(utlech

- E;, E;
Py = wdini; (d_z - E) ;
P;; : Power flowing from subsystem ¢ to j
d; : mean density of eigenmodes in i
ni; : Coupling loss factors
E; : wave energy stored in 7

Expert tool - general conditions:
irregular structure, low absor ption, many
reflections, well separated substructures, ...

Energy ~ |Amp|itude|2
SEA: classical flow method for
phase space densities
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Dynamical Energy Analysis="Fintte' VolumeMethod:

For single cavity — fixed frequency

Boundary value problem —determinethe
ray density ps on the boundary:

Boundary map: © 1 (8,ps) = ©(8,s)
Boundary operator: L : pp(s,ps) — [Lpp](s,ps)

Stationary solution with multiplereflections:

(8, Ds)

(s,ps)

n=0

pp= > L'po=(1-L)"po

N

—

Summation over
multiple reflections

source




Steady state solution:

Boundary map: ¥ : (S,Ps) = ©(8,Ds)
Boundary operator: L : pp(s,ps) — [Lpb](s,s)

b)

\
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Numerical | mplementation:

* Fourier basis— periodic BC, problems at corners

* Chebyshev polynomials — separate expansion along

edges x 10
* Collocation method in spatial, Legendre in momentum
coordinates x 10

* Discrete Flow Mapping — ‘" Ulam’’ type method on grid
with semi—analytic solution

x 100
efficiency gain
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‘ Discrete Flow Mapping \

In typical engineering problems:

g

- Elasticity — different modes (shear, pressure, bending)
- Abrupt changes in material properties,
corners, edges ...; = mode mixing
- Curved shells - ray dynamics along geodesics (if A <R)

Geometry data given as mesh/FEMgrids = use mesh to
generate DEA matrix
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S e

Define boundary map ¢
for each mesh region j with neighbour i:

Hamiltonian:
) H = f(z)p” =w
X = ij (55, D) f(x;) = f; piecewise constant

_ Linear Operator
X; = (sj,p5) | between edgej and |

Lij: py = Llpy] = pf)
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MEM

T, / / AXdX' U, (X)K(X, X')0,(X'):
X') = w(X)o(X — ¢(X"))

Basisfunction W;(s,p): piecewise constant in s aong each edge;
L egendre Polynomial upto order ninp

a) b) c)
(<]
\ 0
(1] L 0 =smal 1 0 isn1in L
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DFM: Num. method for solving the stationary integral equation

* Propagation by linear integral operator on each mesh cell -
Finite Volume Method

* Operator: represent in basis functions or collocation method,;
* Reflection/transmission at interfaces = scattering matrices,

* Linear system of equation — standard solver.

DEA interpolates between SEA and Ray Tracing
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Vibro-acousticsfor large
structures. Tank ship
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Junctionsin the structure:

(a) T-junction (b) open end (c) X-junction

blue dashed: incoming s —ray; solid: outgoing s (blue), p (green) and b (yellow)
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Scattering matrix at
edge—T junction

200 Hz

mainly:
Bending = Bending

cos ¢ . ' . R S Langley and K H Heron, Elastic wave
transmission through plate/beam junctions,
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DEA - Bending FEM -aver aged

10

200 Hz
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bending
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Example - Range Rover Shock Tower
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| Range Rover Shock Tower: Including curvature corrections |

FEM DEA 10 KHz
Af =1 kHz Including curvature
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A340-300

g

% Segment of an A340-300:

DEA analysis of complex structure

- FEM meshes glued together
(RBAR — Nastran)

- Anisotropic floor panels

S Tewes — presented at ‘EADS Spitzencluster Workshop’ Courtesy: Innovation Works - EADS
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Segment of an A340-300: 200 Hz
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Dynamical Energy Analysis— Discrete Flow

M apping

vibr o-acoustic modeling using a mesh based
approach!

* applicable in the mid- to high freguency regime — extending SEA.

* can beintegrated into existing meshes = compatibility with standard FEM.

* can involve high degree of complexity and structural details.

* Transfer paths can be easily visualized and detected.
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Dynamical Energy Analysis— Discrete Flow
Mapping

g

vibr o-acoustic modeling using a mesh based
approach!
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