
Modern challenges in the gyrokinetic 
modeling of turbulent transport in 

tokamak plasmas

Yann Camenen

CNRS, Aix-Marseille Univ., Marseille, France 



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

Foreword

‣What this talk is not: 

‣ A review of gyrokinetics and tokamak turbulence

‣What this talk is: 

‣ Focused on the practical application of gyrokinetics to the 
modelling of turbulent transport

‣ List a few points that presently limit us (in my view)
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Outline

‣What is turbulent transport, why does it matter?

‣ Brief introduction to the gyrokinetic framework

‣ Standard simplifications

‣ Local delta-f simulations, typical results

‣What would help?
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The issue of transport in tokamaks

R

Z ‣ Desired: hot, dense core → fusion?
‣ Solution explored: magnetic 

confinement in a toroidal device
‣ Nested magnetic flux surfaces:

radial transport << parallel transport
‣ Core plasma evolution governed by 

the transport across flux surfaces:
lower transport → better confinement

radial 
transport

local conservation 
equation (3D):

‣ 1D transport equation (example of plasma density):

flux surface averaged 
version (1D):
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Electrostatic turbulent transport

‣ Turbulence: small scale perturbations, electrostatic case
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Electromagnetic turbulent transport

‣ Turbulence: small scale electromagnetic perturbations

B
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parallel motion along 
perturbed field line

vkr�Ak ⇥ b0

density perturbation 
in phase 

density perturbation 
out of phase 

no net radial
transport

net radial
transport



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

Gyrokinetic description of turbulent transport

‣ Desired: self-consistent evolution of density, momentum and 
temperature perturbations + electromagnetic perturbations 
‣ Caveat: first principle approach based on Vlasov-Maxwell 

equations is very costly (6D) and rather inefficient
‣ Gyrokinetic ordering:
‣Magnetised plasma

‣ Small perturbations

‣ Spatial scales: gyro-radius

‣ Time scales:

‣ Slow compared to the gyro-period

‣ Keep wave-particle interactions

‣Gyro-averaged equations:
‣ Drop the gyrophase: 6D → 5D
‣ Parallel/perpendicular scale separation
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The gyrokinetic Vlasov-Maxwell system
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‣ This non-linear system yields the turbulent radial fluxes we are 
looking for:

< � ·rr >=

⌧Z
F
b⇥r��̄

B
·rrdv

�
�
⌧Z

Fvk
b⇥r�Āk
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Radial flux of gyrocenters

[see e.g. Brizard RMP’07]
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Good but too expensive...simplifying further

‣ Standard simplifications:

‣ Frozen magnetic equilibrium @B0/@t = 0
>200,000,000 

CPU hours/sim.
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Good but too expensive...simplifying further

‣ Standard simplifications:

‣ Frozen magnetic equilibrium

‣ Frozen background (𝛿f approximation)

@B0/@t = 0

F = F0 + �f@F0/@t = 0 with

>200,000,000 
CPU hours/sim.
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The delta-f approximation

F = F0 + �f
dX

dt
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‣ Equilibrium given by the stationary lowest order gyro-kinetic 
equation:

‣ Then solves for the perturbed distribution function only:

‣ Solution is a canonical Maxwellian, constant on the unperturbed 
trajectories
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source
‣ Valid provided the feedback of turbulence on the equilibrium can 

be discarded: gradient-driven simulations
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Good but too expensive...simplifying further

‣ Standard simplifications:

‣ Frozen magnetic equilibrium

‣ Frozen background (𝛿f approximation)

‣ Local approximation 

@B0/@t = 0

F = F0 + �f@F0/@t = 0 with

andF0(r) = F0(r0) rF0(r) = rF0(r0)

>200,000,000 
CPU hours/sim.
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The local approximation

simulation-to-simulation variability of the measured !i

due to turbulent variation has been obtained for the 1="! ¼
180 case by carrying out three independent ORB5 simula-
tions with different initial conditions [11]. The diffusivities
predicted by the two codes are essentially within the error
bars, despite the very different numerical methods and a
somewhat different set of approximations. In the "! ! 0
limit, both diffusivity curves asymptote to !i=!GB ’
2:8–2:9, similar to the value found in flux-tube simulations
using the circular model equilibrium (!i=!GB ¼ 3:0) or a
MHD equilibrium (!i=!GB ¼ 3:3) [10].

Results of the GYRO code [2] using an s-# approxima-
tion, can be compared against the set of results of the GTC

code [13] with finite aspect ratio effects ‘‘removed’’
(although presumably some finite aspect ratio effects,
like magnetic trapping, were kept) to try to reproduce the
s-# results. These GTC results appear to asymptote to at
least !i=!GB # 2:5 in the flux-tube limit. On the other
hand, the global GYRO results in Ref. [2] converge to-
wards a value of !i=!GB ’ 1:9 in the limit "! ! 0.

The circular analytical equilibrium used for the GTC "!

scaling runs of Ref. [1], yields linear growth rates close to
those using the numerical MHD equilibria [12], and ap-
pears to be similar to the equilibrium used by GENE and
ORB5. Diffusivities from the GTC "! scans of Ref. [1]
converge towards !i=!GB ’ 3:4 in the limit "! ! 0, which
is in relatively good agreement with the present results
!i=!GB ’ 2:8–2:9. This agreement occurs despite notable
differences between these two studies, including the use of
shorter simulations in Ref. [1].

In the s-# approximation the geometry specification is
inconsistent with the magnetic field specification.
However, in their manipulations of the gyrokinetic equa-
tions, code authors often assume that the magnetic field
and geometry are consistent. The final equations used
might, for example, include terms like the divergence of
the magnetic field, which is nonzero in the s-# model, or
these might have been explicitly set to zero by code
authors, given that physical fields are divergence free.
The results of using the s-# approximation will thus not
only be incorrect, but incorrect in a way which may vary
from code to code, so that results are not easily reproduc-
ible. Many flux-tube codes using the s-# model find a
diffusivity of !i=!GB # 1:7 [3] for the Cyclone test case,
substantially different from the value !i=!GB # 3:3 found
using an MHD equilibrium, or 3.0 found using the circular
concentric model [10]. The use of the s-# model may also
explain why the results of Ref. [2] differ from ours. We
suggest that future benchmarks be run using consistent
equilibria.

For a fixed local temperature gradient, the shape of the
temperature profile is known to modify turbulence inten-
sity [2]. To quantify this effect, two extra pairs of simula-
tions were run at "! ¼ 1=280, with the normalized width
!r of the strong temperature region set to #0:4 and #0:2,

approximately one-half and one-quarter of the values in the
previous section (see Fig. 2). We again use pairs of simu-
lations with slightly different nominal temperature gra-
dients, to bracket the desired final temperature gradient.
Here, both codes use Eq. (2) for temperature and density
gradient profiles, but parameters are otherwise identical to
the simulations described above. The mean flux levels of
these simulations, together with those of the previous
section, are plotted in Fig. 3, against the measured width
of the strong gradient region "!

eff ¼ "!=!r, in units of
gyroradius. The width!r is the full width at half maximum
of the initial reconstructed temperature gradient profile;
because the heating operator is quite effective at maintain-
ing these profiles, using late time values makes very little
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FIG. 2 (color online). Logarithmic temperature gradients plot-
ted against radius for simulations with "! ¼ 1=280, and !r ¼
0:2, 0.4, 0.8, in order of increasing width of the plotted peak. The
dashed lines show initial gradients, and the solid lines show the
late time average over the last half of the simulation time.
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FIG. 3 (color online). Average flux levels r 2 ½0:4; 0:6% for t 2
½150; 410%R=cs versus the width of the strong gradient region,
1="!

eff , in gyroradius units.
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F0(r) = F0(r0) + (r � r0)
@F0

@r
[r0]

‣ A single flux-tube is simulated rather than the full tokamak
‣ Profiles are linearised and evaluated at the center of the flux-tube:

F0(r) = F0(r0)

rF0(r) = rF0(r0)

‣ Valid provided the largest turbulent 
structures (~10-20 Larmor radii) do 
not feel the variation of the 
equilibrium

flux tube limit
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Good but too expensive...simplifying further

‣ Standard simplifications:

‣ Frozen magnetic equilibrium

‣ Frozen background (𝛿f approximation)

‣ Local approximation 

‣ Quasi-linear approximation

‣ Cross-phase is assumed to be given by the linear response
‣ Saturation amplitude is modelled

@B0/@t = 0

F = F0 + �f@F0/@t = 0 with

andF0(r) = F0(r0) rF0(r) = rF0(r0)

>200,000,000 
CPU hours/sim.
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Back to the NL local delta-f approximation

‣ Standard simplifications:

‣ Frozen magnetic equilibrium

‣ Frozen background (𝛿f approximation)

‣ Local approximation 

@B0/@t = 0

F = F0 + �f@F0/@t = 0 with

andF0(r) = F0(r0) rF0(r) = rF0(r0)

>200,000,000 
CPU hours/sim.
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Back to the NL local delta-f approximation

‣ Standard simplifications:

‣ Frozen magnetic equilibrium

‣ Frozen background (𝛿f approximation)

‣ Local approximation 

@B0/@t = 0

F = F0 + �f@F0/@t = 0 with

and

‣ Practical choices:
‣ Parallel/perp dynamics → field aligned coordinates
‣ Turbulence homogeneous in the perpendicular plane (local 

approximation) → spectral representation

B
r
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Ak(X) �Âk(kr, k✓, s)

��̂(kr, k✓, s)

�f̂(kr, k✓, s)�f(X)

��(X)

F0(r) = F0(r0) rF0(r) = rF0(r0)

>200,000,000 
CPU hours/sim.
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Figure 8. ITG turbulence: (a) ky spectrum of electron heat flux (Qe) and particle flux carried by
trapped/passing electrons (!t and !p). (b) Cross phase relations between the electrostatic potential
and the trapped/passing electron densities as a function of ky . The light dots represent the respective
linear cross phases at ky = 0.15.

due to their fast parallel motion. If this were true, their contribution to the total particle
transport could be neglected, and it would probably suffice to retain only (bounce-averaged)
trapped electrons in most two-species core turbulence computations. However, analysing our
ITG turbulence simulations, we find that in some cases, a substantial fraction of the particle
pinch is actually carried by the passing electrons. An example, using the above parameters
(except for R/LTe

= 12) and R/Ln = 1.5, is shown in figure 8. Although most of the
inward particle transport is carried by trapped electrons, the contribution of the passing ones is
significant. Inspecting the nonlinear cross phase relations between the electrostatic potential
and the trapped/passing electron densities, one finds that they are again quite similar to their
respective linear values. In particular, all phase shifts are negative, thus explaining the inward
fluxes of both trapped and passing electrons. In the latter case, the adiabaticity breaking
is sufficiently large to yield this surprising result. Obviously, this passing electron pinch is
basically a quasilinear effect.

Changing the plasma parameters only slightly using R/LTi
= 7 instead of R/LTi

= 9,
the dominant turbulence drive is now a TEM. In this case, we obtain the results displayed
in figure 9. While the trapped electrons lead to a net particle transport which is directed
outwards, the passing electrons induce a particle pinch which overcompensates the trapped
electron contribution. Thus, TEM turbulence is able to produce a particle pinch which is
carried solely by passing electrons. (A similar result has been obtained by Dorland and
Hallatschek [21]). As can be inferred from figure 9, this is again a quasilinear effect, like
in the ITG case. Although the TEM scenario ‘trapped electrons move outwards and passing
electrons move inwards’ seems to hold quite generically, our simulations show that R/LTi

needs to exceed a certain nonuniversal threshold in order for the total particle flux to become
negative (compare the results for R/LTi

= 0 presented in [10]). Finally, we would like to
present an argument which is based on the results presented in [10] and which explains why
in TEM turbulence driven by electron temperature gradients, the particle transport carried by
trapped electrons is expected to be outwards. The electron heat flux in such a situation is
mainly due to fluctuations of the perpendicular electron temperature. The latter are, in turn,
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A typical non-linear local delta-f simulation

‣Electrostatic potential spectra

inverse aspect ratio !"r /R#, which is a measure of the
trapped particle fraction. Indeed the simulations show a
nearly perfect linear dependence.

It is evident that the pinch of parallel momentum cannot
be directly related to trapped electrons. Due to their low
mass the momentum in the electron perturbation is negli-
gible. The pinch is generated by the Coriolis drift of the ions,
and the role of the kinetic electrons is merely through their
influence on the mode structure. The interpretation of the
results is that due to the rapid bounce motion the trapped
electrons will enforce a stronger symmetry for the potential
and, therefore, weaken the compensation effect. The work
presented in this paper has led the international community
to speculate on the role of collisions. The pinch of the par-
allel momentum shows a strong similarity to the particle
transport, for which collisionality plays an important
role.32–34 Figure 5 shows the normalized particle diffusivity
!10D /!i# and parallel momentum pinch velocity !RV" /!"#
as a function of the normalized collisionality #
=0.1Zeff Rn19Tk

−2, for the Waltz standard case with R /LN=2.
Here, n19 is the density in units of 1019 m−3, Tk is the tem-
perature in keV, and R is the major radius in meter. As
expected32,34 the particle flux calculated with GKW changes
sign with collisionality in good agreement with the results of
GS2.35,36 The momentum flux !from GKW# on the other hand
does not depend strongly on collisionality. The correspon-
dence with particle transport is therefore limited. It is to be
noted that the role of the trapped electrons in the two effects
is indeed different. For particle transport, the trapped elec-
trons must carry a density perturbation which is strongly
influenced by the collisions on the timescale set by the fre-
quency of the mode. The role of the trapped electrons in the
case of the parallel momentum flux is to !partly# retain the
symmetry in the low field side position. The bounce time of
the trapped electrons is always much shorter than the fre-

quency of the mode as well as the collisional detrapping
time, and the effect therefore persists even in the presence of
collisions.

V. NONLINEAR SIMULATION

The discussion up to now has been limited to linear
theory and more specifically to the most unstable mode. One
might argue that the nonlinear state is characterized by all the
modes and that the compensation effect is possibly reduced.
This is unlikely the case since the compensation effect sim-
ply implies a shift in k$ which should occur for all modes in
a similar manner. Indeed nonlinear simulations presented in
this section confirm the existence of the compensation effect.

Figure 6 shows a electrostatic collisionless nonlinear
simulation with adiabatic electrons for the cyclone base case,
R /LT=6.9, R /LN=2.2, magnetic shear ŝ=0.78, inverse as-
pect ratio $=0.19, safety factor q=1.4, and R /a=3. Different
from the cyclone base case, however, a toroidal rotation u
=0.2 has been assumed. The resolution of the simulation is
as follows: number of toroidal modes Nn=8 !only positive
modes counted#, number of radial modes Nr=41 !both
signs#, number of grid points in the parallel velocity direc-
tion Nv=32, number of points in the magnetic moment di-
rection N%=8, and number of points along the field line Ns
=16. The spacing between the modes is &!k'(s#=0.1, and
&!kr(s#=0.1, where (s=mcs /eB and cs="T /m. Shown are
the ion heat flux and momentum pinch LTV" in units of
(s

2cs /a as a function of time !tcs /a#. Due to the reduced
number of toroidal modes, a compromise based on the com-
putational costs connected with the long time interval of the
simulation, the ion heat flux !!I=1.28)0.04# is somewhat
smaller than the Dimits result !!i=1.54#.37 A proper bench-
mark for the cyclone case has been published in Ref. 38.

It can be seen from the figure that the parallel momen-
tum flux oscillates around zero. An average over the window
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FIG. 5. !Color online# Normalized effective particle diffusivity !10D /!i,
crosses GS2, circles GKW#, normalized momentum pinch velocity
!RV" /!", squares GKW#, and Prandtl number !!" /!i, diamonds GKW# as a
function of the normalized collisionality for the Waltz standard case with
R /LN=2.
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temporal evolution
‣Fluxes

NL fluxes peak in a 
narrow spectral region
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Spectral grids and simulation cost

‣ Large grids = high computational cost 
→ what physically determines the grid sizes?

‣ Box size > largest physical structures 
→ gives the step size in spectral space

kmin
? =

2⇡

L?
<

2⇡

Lphys

‣ Small scales needed for dissipation
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In practice, this implies about 
600x600 spectral modes!!
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Getting rid of small scales?

‣ Fluxes peak at large scale, why bother with the small scales? 
‣ Small scales suppressed → unphysical energy pile up 

k✓⇢imin max

|��✓| ‣ Can be cured by imposing numerical 
dissipation 
Caveat: difficult to assess the impact 
on the solution...
‣ Collisions help to avoid the pile-up

‣More refined approach: use a simpler model for the small scales

k✓⇢imin max

|��✓| ‣ Used in fluid turbulence: Large Eddy 
Simulations
‣ Interesting, but not so easy to in 

practice (the model parameters tend 
to depend on the turbulence type)

simulated

modelled

[see e.g. Morel PoP’12]

 pile-up



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

What is done in practice

‣ Large scales: increase box size until convergence of the solution
‣ Not always possible: if box size larger than plasma size, global 

simulations are required
‣ Small scales: cut the smallest scales in the poloidal direction 

(saves a factor ~20-60)
‣ Not totally satisfactory: only valid 

if electron scales are not active

‣ Even like this, one arrives at about 10,000 to 100,000 CPU hours 
per simulation. 
‣ Saving an extra factor 10-100 would change our life!! Any idea?

Plasma Phys. Control. Fusion 51 (2009) 124020 C M Roach et al

Figure A1. γ normalized to vti/a versus kyρi for linear electrostatic calculations with kinetic
electrons for the MAST equilibrium described: (a) without collisions from GS2, GKW and GYRO
and (b) with and without collisions from GS2.
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Appendix A. Comparing electrostatic microstability analyses from local GK codes for a
MAST equilibrium

We have compared linear results from the local gyrokinetics codes GKW, GS2 and GYRO,
using parameters of a strongly shaped equilibrium flux surface in the MAST H-mode discharge
#8500 [10, 18]: ρ = r/a = 0.7, r/R = 0.443, q = 2.1, ŝ = (ρ/q)(dq/dρ) = 2.2,
β = 0.06, Ti = 0.385 keV, (1/Ti)dTi/dρ = −4.39, Te = 0.346 keV, (1/Te)dTe/dρ = −2.79,
ne = 5.7 × 1019 m−3, (1/ne)dne/dρ = −0.44, elongation κ = 1.56, dκ/dρ = 0.5,
triangularity δ = 0.2, dδ/dρ = 0.43 and (1/a)dR/dρ = −0.29. Figure A1(a) demonstrates
good agreement between the computed spectra of the dominant linear growth rate for a
collisionless electrostatic model with kinetic electrons and without flow shear.

Figure A1(b) shows, from GS2 runs using a local Miller parametrization of the equilibrium
[35], that with collisions the modes around kyρi ∼ 1 become stable. Estimating the ratio of
the electron detrapping frequency to the diamagnetic frequency, for these parameters, gives
νe

detrap/ω∗ ! 1 for kyρi ∼ 1, which is consistent with a reduced trapped electron drive around
this wavenumber.

Euratom © 2009.
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Reduced spectral resolution at small scales?

‣ Spectral space:

‣ Non-uniform Fourier transform?

k?⇢i

large scales small scales
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Adding more physics to the model

‣ Two examples, still in the local and delta-f approximations
‣ Collisions
‣Modification of the background:
‣ Anisotropic distribution functions, example of ICRH
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Collisions

‣ In tokamaks, collisionality is small but non-zero: 
‣ Collisions determine the equilibrium state 
‣ Collisions affect turbulence (modify particle orbits)
‣ Desired: a collision operator which
‣ Relaxes towards a Maxwellian
‣ Conserves particle, energy and momentum
‣ Linearised Landau collision operator meets these requirements:

C(Fa, Fb) = C(F0a, F0b) + C(�fa, F0b) + C(F0a, �fb)

 zero for a Maxwellian 
background

‣ Gyro-averaged version: see e.g. Brizard PoP’04 
‣Widely used in delta-f gyrokinetic codes, with various degree of 

approximation



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

Collisions - a recent development

‣ Gyrocenters are not particles, the difference gives rise to the 
polarisation density for instance
‣ Collisions apply between particles, not gyrocenters
‣ Consequently, the collision operator applied to a Maxwellian of 

gyrocenters does not vanish for fluctuating fields:

‣ So far, no delta-f gyrokinetic code keeps this term... (at least to my 
knowledge)

C(FMa, FMa) = C(FMa
q��

T
, FMa) + C(FMa, FMa

q��

T
)

[Madsen PRE’13]vanishes only for �� = 0



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

Anistropic distribution function

‣ A purely Maxwellian background is not always a good representation 
of the reality
‣ Example of Ion Cyclotron Resonant Heating: 
‣ Resonance between the gyro-motion and the wave → increase 

perpendicular energy
[Kazakov PPCF’12]Plasma Phys. Control. Fusion 54 (2012) 105010 Ye O Kazakov et al
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Figure 1. (a), (b) Relative location of the ICRH resonance (dashed
curves) and the flux surface (dotted) for central (a) and LFS (b)
heating; r0/a = 0.3. (c), (d) Contour plots of the minority ion
distribution function in velocity space at θ = 0, assuming 80% of
the minorities are in the high-energy tail with αT = 10, while the
rest are thermal minorities with a temperature Tth = T⊥/25. The
dashed line in (c) corresponds to the trapped particles having their
banana tip at the resonance location. (e), (f ) Minority density as a
function of the poloidal angle calculated from equation (2). For the
LFS heating (f ), the minority density calculated from the
approximate formula (equation (4)) keeping only the linear (dotted
line), and linear + quadratic terms (dashed line) are also shown.

2.1. Analytical model for minority density

It is instructive to give approximate analytical expressions for
the poloidal variation of the minority to make its parametric
dependences more explicit.

We first consider the situation when the studied magnetic
surface, which is assumed to be circular, does not intersect
the ICRH resonance and satisfy B(θ) ! Bc (as that shown in
figure 1(b)).

The poloidally varying minority density can be written as

nm(θ) = neXm [ 1 + G1(k) cos θ + G2(k) cos(2θ) + · · ·] (4)

expressed conveniently in terms of a single dimensionless
parameter

k = εbc(αT − 1)

bc + αT (1 − bc)
. (5)

The details of the calculation are shown in section A.1 in
the appendix. Here, we introduced the inverse aspect ratio
of the studied flux surface ε = r/R0, the location of the
resonance layerbc = Bc/B0 expressed in terms of the magnetic
field strength at the magnetic axis B0 = B(R = R0) and at
the resonance Bc. Furthermore, the Fourier coefficients are
given by

G1(k) = 2
k

(
1 −

√
1 − k2

)
= k + k3/4 + · · · ,

G2(k) = 2
k2

(
2 − k2 − 2

√
1 − k2

)
= k2/2 + k4/4 + · · · , (6)

and
Xm = 〈nm〉/ne (7)

denotes the minority density fraction, where 〈· · ·〉 is an average
over the poloidal angle. This parameter is usually provided in
experiments and is used in most of ICRH codes (e.g. X[H] =
5%, X[D] = 95% means that hydrogen minority heating in
D : H = 95 : 5 plasma is chosen as the ICRH scenario).

We note that keeping only the first term in the Taylor
expansions of the Fourier coefficients in equation (6) is a good
approximation (with a relative error less than 4%) if αT " 1/ε
or when the ICRH resonance layer is not tangential to the
studied flux surface and 2ε " (1 − bc)/bc is satisfied. In
these situations, neglecting the G2 and higher order terms
from the Fourier expansion gives an accuracy better than 15%.
As illustrated in figure 1(f ), it is typically sufficient to keep
only linear and quadratic asymmetries to fit the numerical
result described by equation (2). For smaller values of the
temperature anisotropy, keeping only a linear term is a good
approximation to describe minority density asymmetry caused
by ICRH.

We also consider the situation when the resonance is at
the high magnetic field side (HFS) of the flux surface. In
this case the expression for the density variation on the flux
surface is more complex, and we cannot provide a single
approximate formula that is valid for the whole experimentally
relevant range of αT . In section A.2 in the appendix we derive
two formulas, one for lower and one for higher values of the
impurity temperature anisotropy.

Writing the minority density in the form

nm(θ) ≈ neXm[1 + Hε cos θ ], (8)

the Fourier coefficient H can be derived to be

H = −αT (bc − 2) − 9bc

αT (bc − 1) − 9bc

(9)

in the low to moderate temperature anisotropy region, and

H =
bc

[√
(1 − 1/bc) /(4αT ) + 3 + 1/(4αT )

]
− 1 − 2b2

c

2(bc − 1)2

(10)

for moderate and higher values of αT .
Figure 2 shows the minority density asymmetry,

defined as nm(π)/nm(0) − 1, calculated with the exact
expression equation (2) compared with the low-moderate
αT approximation equation (9) and the moderate-high αT

approximation equation (10). As the figure illustrates, for

3

‣ Increased trapping → poloidal density asymmetries
‣ Poloidal density asymmetries modify turbulent impurity transport
‣ Included in the modelling by considering an anisotropic F0
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Figure 1. (a), (b) Relative location of the ICRH resonance (dashed
curves) and the flux surface (dotted) for central (a) and LFS (b)
heating; r0/a = 0.3. (c), (d) Contour plots of the minority ion
distribution function in velocity space at θ = 0, assuming 80% of
the minorities are in the high-energy tail with αT = 10, while the
rest are thermal minorities with a temperature Tth = T⊥/25. The
dashed line in (c) corresponds to the trapped particles having their
banana tip at the resonance location. (e), (f ) Minority density as a
function of the poloidal angle calculated from equation (2). For the
LFS heating (f ), the minority density calculated from the
approximate formula (equation (4)) keeping only the linear (dotted
line), and linear + quadratic terms (dashed line) are also shown.

2.1. Analytical model for minority density

It is instructive to give approximate analytical expressions for
the poloidal variation of the minority to make its parametric
dependences more explicit.

We first consider the situation when the studied magnetic
surface, which is assumed to be circular, does not intersect
the ICRH resonance and satisfy B(θ) ! Bc (as that shown in
figure 1(b)).

The poloidally varying minority density can be written as

nm(θ) = neXm [ 1 + G1(k) cos θ + G2(k) cos(2θ) + · · ·] (4)

expressed conveniently in terms of a single dimensionless
parameter

k = εbc(αT − 1)

bc + αT (1 − bc)
. (5)

The details of the calculation are shown in section A.1 in
the appendix. Here, we introduced the inverse aspect ratio
of the studied flux surface ε = r/R0, the location of the
resonance layerbc = Bc/B0 expressed in terms of the magnetic
field strength at the magnetic axis B0 = B(R = R0) and at
the resonance Bc. Furthermore, the Fourier coefficients are
given by

G1(k) = 2
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1 −
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)
= k + k3/4 + · · · ,

G2(k) = 2
k2

(
2 − k2 − 2

√
1 − k2

)
= k2/2 + k4/4 + · · · , (6)

and
Xm = 〈nm〉/ne (7)

denotes the minority density fraction, where 〈· · ·〉 is an average
over the poloidal angle. This parameter is usually provided in
experiments and is used in most of ICRH codes (e.g. X[H] =
5%, X[D] = 95% means that hydrogen minority heating in
D : H = 95 : 5 plasma is chosen as the ICRH scenario).

We note that keeping only the first term in the Taylor
expansions of the Fourier coefficients in equation (6) is a good
approximation (with a relative error less than 4%) if αT " 1/ε
or when the ICRH resonance layer is not tangential to the
studied flux surface and 2ε " (1 − bc)/bc is satisfied. In
these situations, neglecting the G2 and higher order terms
from the Fourier expansion gives an accuracy better than 15%.
As illustrated in figure 1(f ), it is typically sufficient to keep
only linear and quadratic asymmetries to fit the numerical
result described by equation (2). For smaller values of the
temperature anisotropy, keeping only a linear term is a good
approximation to describe minority density asymmetry caused
by ICRH.

We also consider the situation when the resonance is at
the high magnetic field side (HFS) of the flux surface. In
this case the expression for the density variation on the flux
surface is more complex, and we cannot provide a single
approximate formula that is valid for the whole experimentally
relevant range of αT . In section A.2 in the appendix we derive
two formulas, one for lower and one for higher values of the
impurity temperature anisotropy.

Writing the minority density in the form

nm(θ) ≈ neXm[1 + Hε cos θ ], (8)

the Fourier coefficient H can be derived to be

H = −αT (bc − 2) − 9bc

αT (bc − 1) − 9bc

(9)

in the low to moderate temperature anisotropy region, and

H =
bc

[√
(1 − 1/bc) /(4αT ) + 3 + 1/(4αT )

]
− 1 − 2b2

c

2(bc − 1)2

(10)

for moderate and higher values of αT .
Figure 2 shows the minority density asymmetry,

defined as nm(π)/nm(0) − 1, calculated with the exact
expression equation (2) compared with the low-moderate
αT approximation equation (9) and the moderate-high αT

approximation equation (10). As the figure illustrates, for
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Figure 1. (a), (b) Relative location of the ICRH resonance (dashed
curves) and the flux surface (dotted) for central (a) and LFS (b)
heating; r0/a = 0.3. (c), (d) Contour plots of the minority ion
distribution function in velocity space at θ = 0, assuming 80% of
the minorities are in the high-energy tail with αT = 10, while the
rest are thermal minorities with a temperature Tth = T⊥/25. The
dashed line in (c) corresponds to the trapped particles having their
banana tip at the resonance location. (e), (f ) Minority density as a
function of the poloidal angle calculated from equation (2). For the
LFS heating (f ), the minority density calculated from the
approximate formula (equation (4)) keeping only the linear (dotted
line), and linear + quadratic terms (dashed line) are also shown.

2.1. Analytical model for minority density

It is instructive to give approximate analytical expressions for
the poloidal variation of the minority to make its parametric
dependences more explicit.

We first consider the situation when the studied magnetic
surface, which is assumed to be circular, does not intersect
the ICRH resonance and satisfy B(θ) ! Bc (as that shown in
figure 1(b)).

The poloidally varying minority density can be written as

nm(θ) = neXm [ 1 + G1(k) cos θ + G2(k) cos(2θ) + · · ·] (4)

expressed conveniently in terms of a single dimensionless
parameter

k = εbc(αT − 1)

bc + αT (1 − bc)
. (5)

The details of the calculation are shown in section A.1 in
the appendix. Here, we introduced the inverse aspect ratio
of the studied flux surface ε = r/R0, the location of the
resonance layerbc = Bc/B0 expressed in terms of the magnetic
field strength at the magnetic axis B0 = B(R = R0) and at
the resonance Bc. Furthermore, the Fourier coefficients are
given by

G1(k) = 2
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)
= k + k3/4 + · · · ,

G2(k) = 2
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(
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√
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)
= k2/2 + k4/4 + · · · , (6)

and
Xm = 〈nm〉/ne (7)

denotes the minority density fraction, where 〈· · ·〉 is an average
over the poloidal angle. This parameter is usually provided in
experiments and is used in most of ICRH codes (e.g. X[H] =
5%, X[D] = 95% means that hydrogen minority heating in
D : H = 95 : 5 plasma is chosen as the ICRH scenario).

We note that keeping only the first term in the Taylor
expansions of the Fourier coefficients in equation (6) is a good
approximation (with a relative error less than 4%) if αT " 1/ε
or when the ICRH resonance layer is not tangential to the
studied flux surface and 2ε " (1 − bc)/bc is satisfied. In
these situations, neglecting the G2 and higher order terms
from the Fourier expansion gives an accuracy better than 15%.
As illustrated in figure 1(f ), it is typically sufficient to keep
only linear and quadratic asymmetries to fit the numerical
result described by equation (2). For smaller values of the
temperature anisotropy, keeping only a linear term is a good
approximation to describe minority density asymmetry caused
by ICRH.

We also consider the situation when the resonance is at
the high magnetic field side (HFS) of the flux surface. In
this case the expression for the density variation on the flux
surface is more complex, and we cannot provide a single
approximate formula that is valid for the whole experimentally
relevant range of αT . In section A.2 in the appendix we derive
two formulas, one for lower and one for higher values of the
impurity temperature anisotropy.

Writing the minority density in the form

nm(θ) ≈ neXm[1 + Hε cos θ ], (8)

the Fourier coefficient H can be derived to be

H = −αT (bc − 2) − 9bc

αT (bc − 1) − 9bc

(9)

in the low to moderate temperature anisotropy region, and

H =
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[√
(1 − 1/bc) /(4αT ) + 3 + 1/(4αT )

]
− 1 − 2b2
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2(bc − 1)2

(10)

for moderate and higher values of αT .
Figure 2 shows the minority density asymmetry,

defined as nm(π)/nm(0) − 1, calculated with the exact
expression equation (2) compared with the low-moderate
αT approximation equation (9) and the moderate-high αT

approximation equation (10). As the figure illustrates, for

3

v?

vk

n

LFS HFSHFS

T? > Tk



Yann Camenen ESF Exploratory Workshop - Garching, 13-16 Oct. 2013

The delta-f approximation

F = F0 + �f
dX

dt

����
0

· @F0

@X
+

dV

dt

����
0

· @F0

@V
= 0

‣ Equilibrium given by the stationary lowest order gyro-kinetic 
equation:

‣ Then solves for the perturbed distribution function only:

‣ Solution is a canonical Maxwellian, constant on the unperturbed 
trajectories

@�f

@t
+

dX

dt
· @�f
@X

+
dV

dt
· @�f
@V

=
dX

dt

����
1

· @F0

@X
+

dV

dt

����
1

· @F0

@V

source
‣ Valid provided the feedback of turbulence on the equilibrium can 

be discarded: gradient-driven simulations
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Conclusions

‣ Any idea to decrease the numerical cost of NL local delta-f 
simulations would be very welcome!
‣ It seems to me that there may be some room for 

improvement in the spatial discretization

‣ Gyrokinetic theory lies on robust foundations 
‣ Not obvious the extension of simplified model is as robust. 

Would be worth giving it a go?


