Asymptotic preserving methods for the BGK-Vlasov-Poisson system in the quasi-neutral and fluid limits

Marie Hélène Vignal

Toulouse Mathematics Institute, France

Garching, 14th October 2013

Work in collaboration with : Nicolas Crouseilles (Inria Bretagne)

Giacomo Dimarco (Toulouse)

Outline

- The BGK-Vlasov-Poisson model, overall idea
 - 2 Quasi-neutral (QN) and fluid limits of the BGK-Vlasov-Poisson model
 - The fluid limit
 - The quasi-neutral limit and its reformulation
 - The joint quasi-neutral and fluid limit and its reformulation
 - The reformulated BGK-Vlasov Poisson system

Numerical schemes

- Existing AP schemes in the hydrodynamic limit
- Classical and AP schemes in the quasi-neutral limit
- Drawbacks of the discrete existing schemes coupling
- Our new scheme
- Numerical results

The BGK-Vlasov-Poisson model

f : electron distribution function, ϕ : electric potential Unknowns One species model for clarity $x \in \Omega \subset \mathbb{R}^d$, $v \in \mathbb{R}^d$, $t \ge 0$ $(S_{\varepsilon,\lambda}) \begin{cases} \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} \frac{1}{\tau(\rho,T)} (M[f] - f) = \frac{1}{\varepsilon} Q(f), \\ \lambda^2 \Delta \phi = \rho - \rho_i. \end{cases}$ $M[f] = \frac{\rho}{(2\pi T)^{d/2}} \exp\left(\frac{-|v-u|^2}{2T}\right), \quad \begin{pmatrix} \rho \\ \rho u \\ \frac{d}{2}\rho T + \frac{\rho |u|^2}{2T} \end{pmatrix} = \int \begin{pmatrix} 1 \\ v \\ \frac{|v|^2}{2} \end{pmatrix} f \, dv,$ $\tau(\rho, T)$: scaled relaxation time Data ρ_i : Constant ion density

 λ : scaled Debye length

 $= \frac{\text{Debye length}}{\text{size of the domain}}$

E : Knudsen number

 $= \frac{\text{mean free path}}{\text{size of the domain}}$

Overall idea

Multi-scale model $\mathcal{S}_{\epsilon,\lambda}$ depending on 2 parameters

ε, λ can : be very small in some regions → microscopic scales
 be of order 1 in other ones → macroscopic scales
 take all the values between 1 and small values elsewhere

Difficulties :

- Explicit schemes : stable and consistent iff micro. scales are resolved
- Implicit schemes : unconditionally stable and consistent but non linear

A solution : Use a scheme preserving the limits $\lambda, \epsilon \to 0$

- Mesh independent of λ , ϵ : Asymptotic stability.
- Recover an approximate solution of $S_{\epsilon,0}$, $S_{0,\lambda}$ or $S_{0,0}$ if ϵ and/or $\lambda \ll 1$: Asymptotic consistency.

Both properties \Rightarrow Asymptotic preserving scheme (AP) ([S.Jin] kinetic \rightarrow Hydro)

Huge cost

Outline

The BGK-V

Quasi-neutral (QN) and fluid limits of the BGK-Vlasov-Poisson model

- The fluid limit
- The quasi-neutral limit and its reformulation
- The joint quasi-neutral and fluid limit and its reformulation
- The reformulated BGK-Vlasov Poisson system

Numerical schemes

- Existing AP schemes in the hydrodynamic limit
- Classical and AP schemes in the quasi-neutral limit
- Drawbacks of the discrete existing schemes coupling
- Our new scheme
- Numerical results

4 Conclusion

The fluid limit of the BGK-Vlasov-Poisson system

Formally passing to the limit $\epsilon \to 0$ gives

$$(S_{0,\lambda}) \begin{cases} M[f] = f, \\ \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \frac{1}{\tau(\rho, T)} (M[f] - f), \\ \lambda^2 \Delta \phi = \rho - \rho_i, \end{cases}$$

Taking the moments of Vlasov \Rightarrow Euler equations

$$(S_{0,\lambda}) \begin{cases} \partial_t \rho + \nabla_x \cdot (\rho \, u) = 0, \\ \partial_t (\rho \, u) + \nabla_x \cdot (\rho \, u \otimes u) + \nabla_x \rho = \rho \, \nabla_x \phi, \\ \partial_t E + \nabla_x \cdot ((E + \rho) \, u) = \rho \, u \cdot \nabla_x \phi, \\ \lambda^2 \Delta \phi = \rho - \rho_i, \\ \text{with } \rho = \frac{2}{d} \left(E - \frac{\rho \, |u|^2}{2} \right). \end{cases}$$

The QN limit of the BGK-Vlasov-Poisson system

Formally passing to the limit $\lambda \to 0$ gives

$$(S_{\varepsilon,0}) \begin{cases} \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f), \\ 0 = \rho - \rho_i, \end{cases}$$

 ϕ is determined by the constraint $\rho = \rho_i$

To recover an explicit eq. for ϕ we must use the moment eqs of Vlasov

Moment eqs of Vlasov with
$$\rho u = \int f v \, dv$$
, $S = \int f v \otimes v \, dv$

$$\begin{cases} \partial_t \rho + \nabla_x \cdot (\rho u) = 0, \\ \partial_t (\rho u) + \nabla_x S = \rho \nabla_x \phi, \end{cases} \Leftrightarrow \begin{cases} \nabla_x \cdot (\rho u) = 0, \\ \partial_t (\rho u) + \nabla_x S = \rho \nabla_x \phi, \end{cases}$$

$$\Rightarrow \nabla_x \cdot (\rho \nabla_x \phi) = \nabla_x^2 : S \quad \text{explicit eq. for } \phi$$

The QN limit of the BGK-Vlasov-Poisson system

Reciprocally

$$abla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{x}} \phi) = \nabla_{\mathbf{x}}^2 : \mathbf{S} \quad \Rightarrow \quad \rho(\mathbf{x}, t) = \rho(\mathbf{x}, 0) - t \nabla_{\mathbf{x}} \cdot (\rho u)(\mathbf{x}, 0)$$

The reformulated BGK-Vlasov-QN system

$$(RS_{\varepsilon,0}) \begin{cases} \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f), \\ \nabla_x \cdot (\rho \nabla_x \phi) = \nabla_x^2 : S, \end{cases}$$

 $(RS_{\epsilon,0}) \Leftrightarrow (S_{\epsilon,0}) \quad \text{iff} \quad \rho(x,0) = \rho_i \quad \text{ and } \quad \nabla_x \cdot (\rho \, u)(x,0) = 0.$

The reformulated system does not project the density on the quasi-neutral state.

The joint QN and fluid limits

The joint limit $(\lambda,\epsilon) \to (0,0)$ gives

$$(S_{0,0}) \begin{cases} \partial_t \rho + \nabla_x \cdot (\rho \, u) = 0, \\ \partial_t (\rho \, u) + \nabla_x \cdot S = \rho \nabla_x \phi, \\ \partial_t E + \nabla_x \cdot ((E + \rho) \, u) = \rho \, u \cdot \nabla_x \phi, \\ 0 = \rho - \rho_i, \end{cases} \quad \text{with} \begin{cases} S = (\rho \, u \otimes u) + \rho \, ld \\ p = \frac{2}{d} \left(E - \frac{\rho \, |u|^2}{2} \right) \end{cases}$$

This system can be also reformulated

$$(RS_{0,0}) \begin{cases} \partial_t \rho + \nabla_x \cdot (\rho \, u) = 0, \\ \partial_t (\rho \, u) + \nabla_x \cdot S = \rho \, \nabla_x \phi, \\ \partial_t E + \nabla_x \cdot ((E + \rho) \, u) = \rho \, u \cdot \nabla_x \phi, \\ \nabla_x \cdot (\rho \, \nabla_x \phi) = \nabla_x^2 : S, \\ \text{iff} \begin{cases} \rho(x, 0) = \rho_i \\ \nabla_x \cdot (\rho \, u)(x, 0) = 0 \end{cases} \end{cases}$$

All the limits

Summary

Reformulation of the quasi-neutral limits

It is possible to complete the diagram following the same ideas.

Start from the BGK-Vlasov-Poisson system

$$(S_{\varepsilon,\lambda}) \begin{cases} \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f), \\ \lambda^2 \Delta \phi = \rho - \rho_i, \end{cases}$$

Reformulation of the BGK-Vlasov-Poisson system

Work on the moment eqs

$$(S_{\varepsilon,\lambda}) \Rightarrow \begin{cases} \partial_t \rho + \nabla_x \cdot (\rho \, u) = 0, \\ \partial_t (\rho \, u) + \nabla_x \, S = \rho \nabla_x \phi, \Rightarrow \\ \lambda^2 \Delta \phi = \rho - \rho_i, \end{cases} \begin{cases} \partial_{tt}^2 \rho + \partial_t \nabla_x \cdot (\rho \, u) = 0, \\ \nabla_x \cdot \partial_t (\rho \, u) + \nabla_{xx}^2 : S = \nabla_x \cdot (\rho \nabla_x \phi) \\ \lambda^2 \partial_{tt}^2 \Delta \phi = \partial_{tt}^2 \rho, \end{cases}$$

$$\Rightarrow \quad \lambda^2 \partial_{tt}^2 \Delta \phi + \nabla_x \cdot \left(\rho \nabla_x \phi \right) = \nabla_{xx}^2 : S.$$

The reformulated BGK-Vlasov-Poisson system

$$(RS_{\varepsilon,\lambda}) \begin{cases} \partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f), \\ \lambda^2 \partial_{tt}^2 \Delta \phi + \nabla_x \cdot \left(\rho \nabla_x \phi \right) = \nabla_{xx}^2 : S. \end{cases} \Leftrightarrow (S_{\varepsilon,\lambda}) \\ \inf \begin{cases} \lambda^2 \Delta \phi(x,0) = \rho(x,0) - \rho_i, \\ \lambda^2 \partial_t \Delta \phi(x,0) = -\nabla_x \cdot (\rho u)(x,0). \end{cases} \end{cases}$$

Numerical point of view

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f)$$

Implicit treatment of Q(f) is necessary otherwise Δt ≤ ε

$$\lambda^2 \partial_{tt}^2 \Delta \phi + \nabla_x \cdot \left(\rho \nabla_x \phi \right) = \nabla_{xx}^2 : S.$$

- Harmonic oscillator eq. on Δφ : implicit treatment necessary
 Explicit treatment of φ ⇒ conditional stability : Δt ≤ λ
- Consistency properties
 - Does not degenerate when $\lambda \rightarrow 0$ and reduces to $(RS_{\epsilon,0})$ if $\lambda = 0$

•
$$(RS_{\varepsilon,\lambda}) \Leftrightarrow (S_{\varepsilon,\lambda}) \text{ iff } \begin{cases} \lambda^2 \Delta \phi(x,0) = \rho(x,0) - \rho_i, \\ \lambda^2 \partial_t \Delta \phi(x,0) = -\nabla_x \cdot (\rho \, u)(x,0). \end{cases}$$

With not well prepared initial conditions, the scheme must project the density on the state ρ_i

Outline

- The BGK-Vlasov-Poisson model, overall idea
- 2 Quasi-neutral (QN) and fluid limits of the BGK-Vlasov-Poisson model
 - The fluid limit
 - The quasi-neutral limit and its reformulation
 - The joint quasi-neutral and fluid limit and its reformulation
 - The reformulated BGK-Vlasov Poisson system

Numerical schemes

- Existing AP schemes in the hydrodynamic limit
- Classical and AP schemes in the quasi-neutral limit
- Drawbacks of the discrete existing schemes coupling
- Our new scheme
- Numerical results

4) Conclusion

Asymptotic preserving scheme in the fluid limit

AP schemes in the hydrodynamic limit of the Vlasov eq.

No electric field but more general collision operator (Boltzmann)

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon} Q(f)$$

- References
 - S. Pieraccini & G. Puppo (J. Sci Comput. 2007),
 - M. Bennoune & M. Lemou & L. Mieussens (JCP 2008),
 - F. Filbet & S. Jin (JCP 2010),
 - B. Yan & S. Jin (SIAM J. Sci Comput. 2012)
 - G. Dimarco & L. Pareschi (SIAM J. Num Anal. 2013)

Existing AP scheme in the fluid limit

Idea in the case of the BGK Operator if fⁿ is known

$$\frac{f^{n+1}-f^n}{\Delta t} + v \cdot \nabla_x f^n = \frac{1}{\epsilon \tau(\rho^{n+1}, T^{n+1})} \Big(M[f^{n+1}] - f^{n+1} \Big),$$

• *M* depends only on the moments of $f \Rightarrow$ can be solved explicitly

Taking the moments of Vlasov with respect to the velocity

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\nabla_x \cdot \int v f^n dv = 0, \qquad \frac{E^{n+1}-E^n}{\Delta t}+\nabla_x \cdot \int \frac{|v|^2}{2} v f^n dv = 0,$$
$$\frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_x \cdot \int v \otimes v f^n dv = 0, \quad T^{n+1}=\frac{d}{2}\left(\frac{E^{n+1}}{\rho^{n+1}}-\frac{|u|^2}{2}\right),$$

- Δt independent of $\epsilon \Rightarrow$ asymptotically stable
- if $\varepsilon = 0$, $f^{n+1} = M[f^{n+1}] \Rightarrow$ asymptotically consistent

Classical scheme in the quasi-neutral limit

On isentropic Euler system for clarity

$$\begin{cases} \partial_t \rho + \nabla_x \cdot (\rho \, u) = 0, \\ \partial_t (\rho \, u) + \nabla_x \cdot S = \rho \, \nabla_x \phi, \quad \text{with} \quad S = \rho \, u \otimes u + \rho^\gamma \, Id, \quad \gamma > 1 \\ \lambda^2 \Delta \phi = \rho - \rho_i, \end{cases}$$

Classical scheme

$$\begin{cases} \frac{\rho^{n+1}-\rho^n}{\Delta t}+\nabla_x\cdot(\rho u)^n=0,\\ \frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_x\cdot S^n=\rho^n\nabla_x\phi^{n+1},\\ \lambda^2\Delta\phi^{n+1}=\rho^{n+1}-\rho_i, \end{cases}$$

[S. Fabre, JCP 92] stable scheme iff $\Delta t \leq \lambda$

Existing AP scheme in the quasi-neutral limit

AP scheme [Crispel, Degond, V, 07] use the reformulated system

$$\begin{aligned} & \left(\rho u\right)^{n+1} - \rho^n + \Delta t \, \nabla_x \cdot (\rho \, u)^{n+1} = 0, \\ & \left(\rho u\right)^{n+1} - (\rho \, u)^n + \Delta t \, \nabla_x \cdot S^n = \Delta t \, \rho^n \, \nabla_x \phi^{n+1}, \\ & \left(\frac{\lambda^2 \Delta \phi^{n+1} - 2 \, \lambda^2 \Delta \phi^n + \lambda^2 \Delta \phi^{n-1}}{\Delta t^2} + \nabla_x \cdot \left(\rho^n \nabla_x \phi^{n+1}\right) = \nabla_{xx}^2 : S^n, \end{aligned}$$

- Δt independent of $\lambda \Rightarrow$ asymptotically stable [Degond, Liu, V, 08]
- Initially, 2 resolutions of Poisson are necessary,

we recover the conditions
$$\begin{cases} \lambda^2 \Delta \phi^0 = \rho^0 - \rho_i, \\ \lambda^2 (\partial_t \Delta \phi)^0 = -\nabla_x \cdot (\rho u)^0. \end{cases}$$

• Can be reduced at 1 initial resolution of Poisson, changing by $\frac{\lambda^2 \Delta \phi^{n+1} - 2(\rho^n - \rho_i) + \rho^{n-1} - \rho_i}{\Delta t^2} + \nabla_x \cdot \left(\rho^n \nabla_x \phi^{n+1}\right) = \nabla_{xx}^2 : S^n$

Drawbacks of the AP scheme in the QN limit

Very sensitive to the choice of initial conditions

- Due to the 1 or 2 initial iterations of the Poisson eq.
- Can be improved remarking that the scheme is equivalent to

$$\begin{cases} \rho^{n+1} - \rho^n + \Delta t \nabla_x \cdot (\rho u)^{n+1} = 0, \\ (\rho u)^{n+1} - (\rho u)^n + \Delta t \nabla_x \cdot S^n = \Delta t \rho^n \nabla_x \phi^{n+1}, \\ \lambda^2 \Delta \phi^{n+1} = \rho^{n+1} - \rho_i, \end{cases}$$

⇒ Using the mass and momentum eqs $\lambda^{2}\Delta\phi^{n+1} = \rho^{n} - \Delta t \nabla_{x} \cdot (\rho u)^{n+1} - \rho_{i},$ $= \rho^{n} - \rho_{i} - \Delta t \nabla_{x} \cdot (\rho u)^{n} + \Delta t^{2} \nabla_{xx}^{2} : S^{n} - \Delta t^{2} \nabla_{x} \cdot (\rho^{n} \nabla_{x} \phi^{n+1}).$

Gives a new discretization of the reformulated Poisson eq.

$$\lambda^2 \Delta \phi^{n+1} + \Delta t^2 \nabla_x \cdot \left(\rho^n \nabla_x \phi^{n+1} \right) = \rho^n - \rho_i - \Delta t \nabla_x \cdot (\rho u)^n + \Delta t^2 \nabla_{xx}^2 : S^n$$

Drawbacks of the AP scheme in the QN limit

Extension to the Vlasov-Poisson eqs.

- PIC schemes [Degond, Deluzet, Navoret, 2006], [Degond, Deluzet, Navoret, Sun, V, 2010]
- Lagrangian schemes

[Belaouar, Crouseilles, Degond, Sonnendrücker, 2009]

Eulerian schemes

$$\frac{f^{n+1}-f^n}{\Delta t}+v\cdot\nabla_x f^{n+1}+\nabla_x\phi^{n+1}\cdot\nabla_v f^n=0,$$

• Yields a linear system of size the mesh in $v \Rightarrow$ Huge cost

• Goals of our work :

 Construct an Eulerian AP scheme in hydrodynamic and QN limits but with explicit treatments of the Vlasov transport terms in x and v

Our new scheme

Isentropic Euler-Poisson system for clarity

$$\begin{cases} \frac{\rho^{n+1}-\rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^n = 0, \\ \frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t} + \nabla_x \cdot S^n = \rho^n \nabla_x \phi^{n+1}, \\ \lambda^2 \Delta \phi^{n+1} + \Delta t^2 \nabla_x \cdot (\rho^n \nabla_x \phi^{n+1}) = \rho^{n+1} - \rho_i - \Delta t \nabla_x \cdot (\rho u)^n + \Delta t^2 \nabla_{xx}^2 : S^n + \delta t \nabla_x \cdot (\rho u)^n + \delta t^2 \nabla_{xx}^2 : S^n + \delta t \nabla_x \cdot (\rho u)^n + \delta t^2 \nabla_{xx}^2 : S^n + \delta t \nabla_x \cdot (\rho u)^n + \delta t^2 \nabla_x \cdot (\rho u)^n + \delta t^2 \nabla_{xx}^2 : S^n + \delta t \nabla_x \cdot (\rho u)^n + \delta t^2 \nabla_x$$

In 1-D

- Fourier stability analysis on the linearized system $\Rightarrow \Delta t$ independent of λ
- Num. comparison to the classical scheme in the non linear case
 Non QN perturbation of the uniform solution by the density :

$$\rho = \rho_i = 1, \quad u = 1, \quad \partial_x \phi = 0.$$

Euler-Poisson, classical & AP schemes $\lambda^2 = 1$

Euler-Poisson, classical & AP schemes $\lambda^2 = 10^{-5}$

Euler-Poisson, classical &AP schemes $\lambda^2 = 10^{-10}$

BGK-Vlasov-Poisson system

Extension to Vlasov-Poisson, coupling with the BGK AP scheme

$$\begin{cases} \frac{f^{n+1}-f^n}{\Delta t} + v \cdot \nabla_x f^n + \nabla_x \phi^{n+1} \cdot \nabla_v f^n = \frac{1}{\varepsilon \tau^{n+1}} \Big(M[f^{n+1}] - f^{n+1} \Big), \\ \lambda^2 \Delta \phi^{n+1} + \Delta t^2 \nabla_x \cdot \Big(\rho^n \nabla_x \phi^{n+1} \Big) = \rho^{n+1} - \rho_i - \Delta t \nabla_x \cdot (\rho u)^n + \Delta t^2 \nabla_{xx}^2 : S^n. \end{cases}$$

Initially : Maxwellian distribution with quasi-neutral moments. Perturbation of the density and momentum.

$$x \in [0,1], \quad \Delta x = 1/100, \quad v \in [-6,6], \quad \Delta v = 1/128$$

 $\varepsilon = \lambda = 1, \quad \Delta t \approx 8, 2 \cdot 10^{-4}$

BGK-Vlasov-Poisson system

BGK-Vlasov-Poisson system

Works in progress and perspectives

Works in progress

Two species model (ions and electrons)

Perspectives

- Multi-dimensional simulations
- High order schemes preserved in the limits
 ⇒ asymptotically accurate schemes
- More general collision operator : Boltzmann operator