<table>
<thead>
<tr>
<th>Poster</th>
<th>Topic</th>
<th>Name</th>
<th>Affiliation</th>
<th>Presentation title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P251-1</td>
<td>1</td>
<td>Hidalgo C.</td>
<td>CIEMAT</td>
<td>Isotope effect physics, turbulence and long-range correlation studies in tokamaks and stellarators</td>
</tr>
<tr>
<td>P251-2</td>
<td>1</td>
<td>Losada U.</td>
<td>CIEMAT</td>
<td>Interplay between long-scale length radial electric field components and zonal flow-like structures in the TJ-II stellarator</td>
</tr>
<tr>
<td>P251-3</td>
<td>1</td>
<td>Plunk G.G.</td>
<td>IPP-Greifswald</td>
<td>On the nonlinear generation of zonal flows by turbulence in stellarators</td>
</tr>
<tr>
<td>P251-4</td>
<td>1</td>
<td>Sugama H.</td>
<td>NIFS</td>
<td>Radially local approximation of the drift kinetic equation in the conservative form</td>
</tr>
<tr>
<td>P251-5</td>
<td>1</td>
<td>Landreman M.</td>
<td>Univ. Maryland</td>
<td>SPINCS: A flexible tool for advanced stellarator neoclassical computations</td>
</tr>
<tr>
<td>P251-6</td>
<td>1</td>
<td>Smith H.M.</td>
<td>IPP-Greifswald</td>
<td>Calculation of the toroidal torque due to non-axisymmetric magnetic field perturbations in a tokamak with the SPINCS code</td>
</tr>
<tr>
<td>P251-7</td>
<td>1</td>
<td>Matsuoka S.</td>
<td>RIST</td>
<td>Effect of magnetic drift tangential to flux surface on local neoclassical transport in non-axisymmetric plasmas</td>
</tr>
<tr>
<td>P251-8</td>
<td>1</td>
<td>Huang B.</td>
<td>SOKENDAI, NIFS</td>
<td>Comparison of bootstrap current calculation in helical plasmas among different types of approximations in drift-kineti equation</td>
</tr>
<tr>
<td>P251-9</td>
<td>1</td>
<td>Mishchenko A.</td>
<td>IPP-Greifswald</td>
<td>Calculations of Bootstrap and Pfirsch-Schlüter currents in stellarator geometry</td>
</tr>
<tr>
<td>P251-10</td>
<td>1</td>
<td>Ware A.S.</td>
<td>Univ. Montana</td>
<td>Magnetic islands, bootstrap current and 3D MHD modeling of W7-X</td>
</tr>
<tr>
<td>P251-11</td>
<td>1</td>
<td>Laqua H.P.</td>
<td>IPP-Greifswald</td>
<td>Plasma Start-up and Wall Conditioning with ECRH in Wendelstein 7-X</td>
</tr>
<tr>
<td>P251-12</td>
<td>1</td>
<td>Marsen S.</td>
<td>IPP-Greifwald</td>
<td>First results from protective ECRH diagnostics in W7-X</td>
</tr>
<tr>
<td>P251-13</td>
<td>1</td>
<td>Nagasaki K.</td>
<td>Kyoto Univ.</td>
<td>3D Magnetic Field Effect on ECRH/ECCD in Helical Systems</td>
</tr>
<tr>
<td>P251-14</td>
<td>1</td>
<td>Faustin J.M.</td>
<td>EPFL, CBPP</td>
<td>Self-consistent ICRH modelling in Wendelstein 7-X plasmas</td>
</tr>
<tr>
<td>P251-15</td>
<td>1</td>
<td>Sakakibara S.</td>
<td>NIFS</td>
<td>Recent Progress of High-beta Experiments in LHD</td>
</tr>
<tr>
<td>P251-16</td>
<td>1</td>
<td>Narushima Y.</td>
<td>NIFS</td>
<td>Spontaneous heating of magnetic islands in the LHD by plasma flow</td>
</tr>
<tr>
<td>P251-17</td>
<td>1</td>
<td>Ennis D.A.</td>
<td>Auburn Univ.</td>
<td>Implementation of a Coherence Imaging Diagnostic for the Compact Toroidal Hybrid</td>
</tr>
<tr>
<td>P251-18</td>
<td>1</td>
<td>Gradic D.</td>
<td>IPP-Greifswald</td>
<td>Doppler Coherence Imaging of Ion Dynamics in VINETA II</td>
</tr>
<tr>
<td>P251-19</td>
<td>1</td>
<td>Shimizu A.</td>
<td>NIFS</td>
<td>Recent development of 2D potential measurement with heavy ion beam probe on the Large Helical Device</td>
</tr>
<tr>
<td>P251-20</td>
<td>1</td>
<td>Volpe F.A.</td>
<td>Columbia Univ.</td>
<td>Generation of rotational transform in a tilted-coil solenoid-free “tokamak”</td>
</tr>
<tr>
<td>P251-21</td>
<td>1</td>
<td>Okamura S.</td>
<td>NIFS</td>
<td>Optimization of helicon-type magnetic configuration with modular coils and helical coils</td>
</tr>
<tr>
<td>P251-22</td>
<td>1</td>
<td>Gates D.A.</td>
<td>PPPPL</td>
<td>Recent Advances in Stellarator Optimization</td>
</tr>
<tr>
<td>P251-23</td>
<td>1</td>
<td>Mikhailov M.I.</td>
<td>Kurchatov</td>
<td>Approximate Quasi-isodynamicity at Finite Aspect Ratio in a Stellarator Vacuum Magnetic Field</td>
</tr>
<tr>
<td>P251-24</td>
<td>1</td>
<td>Paschkowski N.</td>
<td>IPP-Greifswald</td>
<td>Mini-Stellarator for public outreach</td>
</tr>
<tr>
<td>P251-25</td>
<td>1</td>
<td>Reiman, A.H.</td>
<td>PPPPL</td>
<td>Effects of Weak Pressure Gradients along Magnetic Field Lines, and of Stellarator Symmetry, in Plasma Equilibria with Magnetic Islands</td>
</tr>
<tr>
<td>P251-26</td>
<td>2</td>
<td>Bianco E.</td>
<td>CIEMAT</td>
<td>Doppler Reflectometry for the first plasmas of W7-X</td>
</tr>
<tr>
<td>P252-26</td>
<td>2</td>
<td>Grekov D.</td>
<td>Kharkov</td>
<td>Measurements of plasma density in Uran-2M torus using dual-polarization interferometry</td>
</tr>
<tr>
<td>P252-27</td>
<td>2</td>
<td>Demers D.R.</td>
<td>Xantho Technologies</td>
<td>Conceptual Design of a Heavy Ion Beam Probe for W7-X</td>
</tr>
<tr>
<td>P252-28</td>
<td>2</td>
<td>Edlund E.M.</td>
<td>MIT</td>
<td>Design of a phase contrast imaging diagnostic for Wendelstein 7-X</td>
</tr>
<tr>
<td>P252-29</td>
<td>2</td>
<td>Krämer-Flecken A.</td>
<td>Jülich</td>
<td>Study of turbulence rotation and local i using Correlation Reflectometry at W7-X</td>
</tr>
<tr>
<td>P252-30</td>
<td>2</td>
<td>Weir G.M.</td>
<td>Kyoto Univ.</td>
<td>Fluctuation measurements through correlation radiometry and reflectometry on Heliontron J</td>
</tr>
<tr>
<td>P252-31</td>
<td>2</td>
<td>Stoneking M.R.</td>
<td>Lawrence Univ.</td>
<td>Plans to Use Thomson Scattering to Resolve Centimeter-scale Fluctuations and Electron Pressure Gradients near the Last Closed Flux Surface in the W7-X Stellarator</td>
</tr>
<tr>
<td>P252-32</td>
<td>2</td>
<td>Shchepetov S.V.</td>
<td>A.M.Prokhorov GPI</td>
<td>Review of biennial stellarator activity in A.M. Prokhorov General Physics Institute</td>
</tr>
<tr>
<td>P252-33</td>
<td>2</td>
<td>Shchepetov S.V.</td>
<td>A.M.Prokhorov GPI</td>
<td>Peeling mode stability/instability condition for Mercier stable magnetic hill configuration</td>
</tr>
<tr>
<td>P251-34</td>
<td>1</td>
<td>Hella.</td>
<td>Prokhorov GPI</td>
<td>On the origin of negative current induced axially symmetric oscillations detected in L-2M stellarator experiments</td>
</tr>
<tr>
<td>P253-35</td>
<td>3</td>
<td>Hartmann D.A.</td>
<td>IPP-Greifswald</td>
<td>Current Status of the Neutral Beam Injection System of W7-X</td>
</tr>
<tr>
<td>P253-36</td>
<td>3</td>
<td>Okada H.</td>
<td>Kyoto Univ.</td>
<td>Magnetic Field Optimization Study for Fast Ions Generated by ICRF Heating in Heliontron J</td>
</tr>
<tr>
<td>P253-37</td>
<td>3</td>
<td>Seki R.</td>
<td>NIFS</td>
<td>Effect of shape of resonance layer on acceleration process of ICRF minority ion in LHD</td>
</tr>
<tr>
<td>P253-38</td>
<td>3</td>
<td>Hada K.</td>
<td>Kyoto Univ.</td>
<td>Model Analysis of Plasma Start-Up by NBI with assistance of 2.45 GHz Microwaves in Heliontron J</td>
</tr>
<tr>
<td>P253-39</td>
<td>3</td>
<td>Kapper G.</td>
<td>TU Graz</td>
<td>Impact of finite collisionality effects on electron cyclotron current drive in stellarators</td>
</tr>
<tr>
<td>P253-40</td>
<td>3</td>
<td>Munaretto S.</td>
<td>Univ. Wisconsin-Madison</td>
<td>Control and Reconstruction of 3D equilibria in the MST RFP</td>
</tr>
<tr>
<td>P253-41</td>
<td>3</td>
<td>Könies A.</td>
<td>IPP-Greifswald</td>
<td>CKA-EUTERPE: A kinetic MHD model for nonlinear wave particle interaction</td>
</tr>
<tr>
<td>P253-42</td>
<td>3</td>
<td>Koleschnienko Ya. I.</td>
<td>Institute for Nuclear Res.</td>
<td>Global m=n modes and their destabilization in forthcoming NBI experiments on Wendelstein 7-X</td>
</tr>
<tr>
<td>P253-43</td>
<td>3</td>
<td>Blackwell B.</td>
<td>ANU</td>
<td>Fluctuations in the Alfvén Range of Frequencies in the H-1NF Heliac</td>
</tr>
<tr>
<td>P254-44</td>
<td>4</td>
<td>Moiseenko V.E.</td>
<td>Kharkiv</td>
<td>Assessing short-wavelength Alfvén resonance heating in H-1 heliac</td>
</tr>
<tr>
<td>P255-45</td>
<td>5</td>
<td>Moiseenko V.E.</td>
<td>Kharkiv</td>
<td>Progress in development of stellarator-mirror fission-fusion hybrid concept</td>
</tr>
<tr>
<td>P253-46</td>
<td>3</td>
<td>Ichiguchi K.</td>
<td>NIFS</td>
<td>Three-dimensional numerical analysis of shear flow effects on MHD stability in LHD plasmas</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Authors</td>
<td>Institution</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>P2S3-47</td>
<td>Nicolas T.</td>
<td>NIFS</td>
<td>Bifurcation of the interchange mode growth rate and rotation frequency due to the perpendicular heat conductivity in stellarator plasmas</td>
<td></td>
</tr>
<tr>
<td>P2S3-48</td>
<td>Bolgert P.</td>
<td>PPPL</td>
<td>Optimizing Stellarators for Energetic Particle Confinement using BEAMS3D</td>
<td></td>
</tr>
<tr>
<td>P2S3-49</td>
<td>Yokoyama M.</td>
<td>NIFS</td>
<td>Further Extensions of Development of Integrated Transport Analysis Suite, TASK3D-a, and Applications to LHD Experiment</td>
<td></td>
</tr>
<tr>
<td>P2S3-P02</td>
<td>Kasilov, S.V.</td>
<td>TU Graz</td>
<td>Real space and flux coordinate calculations of fast particle losses in the optimized stellarator</td>
<td></td>
</tr>
<tr>
<td>P2S4-50</td>
<td>Stephey L.A.</td>
<td>Univ. Wisconsin-Madison</td>
<td>Neutral particle source and particle balance in the HSX edge</td>
<td></td>
</tr>
<tr>
<td>P2S4-51</td>
<td>Wenzel U.</td>
<td>IPP-Greifswald</td>
<td>On the neutral behavior under detachment conditions in W7-AS and W7-X</td>
<td></td>
</tr>
<tr>
<td>P2S4-52</td>
<td>Volpe F.A.</td>
<td>Columbia Univ.</td>
<td>Stellarators sources of ions for accelerators -symplectic calculations of ion losses</td>
<td></td>
</tr>
<tr>
<td>P2S4-53</td>
<td>Sano R.</td>
<td>NIFS</td>
<td>Evolution of radiation structure by three dimensional measurement during radiation collapse in LHD</td>
<td></td>
</tr>
<tr>
<td>P2S5-54</td>
<td>Drevlak M.</td>
<td>IPP-Greifswald</td>
<td>Stellarator Optimisation with ROSE</td>
<td></td>
</tr>
<tr>
<td>P2S5-55</td>
<td>Warmer F.</td>
<td>IPP-Greifswald</td>
<td>Options for an Intermediate-Step burning-plasma Stellarator</td>
<td></td>
</tr>
<tr>
<td>P2S3-56</td>
<td>Nagaoka K.</td>
<td>NIFS</td>
<td>Wave-particle interaction analyser for study of Alfven eigenmodes in the Large Helical Device</td>
<td></td>
</tr>
</tbody>
</table>