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Introduction Manufacturing approach: Melt infiltration 

 Future work: 

⇛ Manufacturing process optimisation 

o Textile technological processing of W fibres 

o Melt infiltration process in industrial environment 

⇛ Continuation of thermophysical and mechanical material 

characterisation 

⇛ High heat flux testing of mock-ups with W-Cu composite 

heat sink 
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Example: Micrograph of a 60wt.% 

W – 40wt.% Cu composite metal 

80 μm 

 Precipitation hardened Cu alloy CuCrZr currently regarded 

as state-of-the-art heat sink material (HSM) for highly 

loaded PFCs: 

⇛ Restricted operating temperature window [2]: 

 

 

 

 

 

⇛ Combination of W & Cu in a PFC: 

o Differing thermomechanical properties, esp. CTE 

o No overlap of operating temperature windows 

 

 

 

 W-Cu metal matrix composites (MMCs) as advanced 

HSMs for highly heat loaded PFCs: 

⇛ Material system W-Cu [3]: 

• Constituent materials are readily available 

• No mutual solubility / interfacial reactions 

• Very good wettability of W with Cu melt 

• Tm,Cu = 1083°C   <   Tm,W = 3400°C [4] 

 Fabrication into composites by liquid Cu 

infiltration possible 

⇛ Tailoring of macroscopic material properties possible 

⇛ High thermal conductivity due to coherent Cu matrix 

⇛ High strength at elevated temperatures due to the 

presence of W inclusions / reinforcements 

Manufacturing: 

⇛ Powder metallurgical production of 

open porous W preform (cold pressing) 

⇛ Sintering (1150°C, 2h) 

⇛ Cu melt infiltration (1150°C, 2h) 

⇛ Composition range: 60wt.% - 90wt.% W 

Thermal conductivity 

of W-Cu composite 

metals with varying 

compositions 

 Prime requirements for PFC HSMs for future magnetic 

confinement nuclear fusion devices: 

⇛ High thermal conductivity (> 200 W/mK) 

⇛ High strength at elevated temperatures (≥ 400°C) 

⇛ Capability of being produced on industrial scale 

Microstructure 

Thermophysical 

Mechanical 

Flexural strength of W-

Cu composite metals with 

varying compositions 

5000 μm 

Thermal conductivity 

(radial) of W fibre-reinforced 

CuCrZr composite predicted 

by means of mean-field 

homogenisation (MFH) 

Stress-strain behaviour 

(hoop & axial) of W fibre-

reinforced CuCrZr 

composite predicted by 

means of mean-field 

homogenisation (MFH) 

Braided cylindrical W fibre 

preform 

Pattern: 

 

 

 

 Future magnetic confinement nuclear fusion devices 

⇛ Very challenging environment for materials used for the 

design of highly loaded PFCs 
 

 Melt infiltrated W-Cu composites are potential HSMs for 

future PFC applications 

⇛ W-Cu composite metals 

⇛ W fibre-reinforced Cu 

W preforms for Cu melt infiltration 
Powder metallurgy Short fibres Continuous fibres 

W preform Cu melt infiltration  Future magnetic confinement nuclear fusion devices, as 

e.g. ITER or a demonstration power plant (DEMO): 

⇛ Tokamak with poloidal divertor for exhaust of power 

and particles 

⇛ Very challenging nuclear environment for highly loaded 

plasma facing components (PFCs) like the divertor 

targets 

o Design surface heat flux loads: ≥ 10 MW/m2 [1] 

o Neutron damage levels: ≤ 6-7 dpa/fpy [2] 

Plasma 

W-Cu composite 

⇛ Reinforcing W phase 

⇛ Open porous  

⇛ Defined void fraction and/or architecture 

Wet-laid W short fibre preform 

Continuous W fibre reinforced Cu 

Mechanical 

~180°C             ~300°C 

Loss of strength 
Neutron radiation 

embrittlement 

Open porous W preforms can be 

produced powder metallurgically 

Mock-ups for HHF testing 

2000 μm 

⇛ Process temperature ~1150°C 

Transversal micrograph of 

W fibre-reinforced Cu pipe 

Manufacturing heat sink pipe: 

⇛ Textile technological production of cylindrical W fibre preform 

⇛ Cu melt infiltration 

Thermophysical 

W fibre 

Axial micrograph of 

W fibre-reinforced Cu pipe 

Microstructure 

W 

Cu matrix 

1 mm 

80 μm 

 Continuous W fibres (elastic) in Cu matrix 

(elastoplastic) 

 Orientation: +/- 77° x (hoop) 

y (axial) 
z (radial) 

Cu matrix 

Regular braid – 

2/2 twill weave repeat 

Mean-field homogenisation (MFH) 

Relating micro and macro properties 

by averaging quantities over 

representative volume element 

(RVE)  

⇛ W-Cu (50/50 vol.%) composite metal heat sink 

⇛ W armour tiles bonded to heat sink during Cu melt infiltration 

High strength W fibres: 

⇛ Ø = 50 µm 

⇛ σt > 2 GPa 

⇛ εf ~ 3% 




