
Model Reduction of Hamiltonian Systems, Sym-
plectic Autoencoders and Optimization on Man-
ifolds

Structure-preserving discretizations of Hamiltonian PDEs yield high-dimensional
Hamiltonian ODEs. The solution of these systems can be prohibitively expen-
sive, which is why practitioners often employ Model Reduction techniques. One
of these is the Reduced Basis Method (RBM), whose aim is the construction
of a lower dimensional dynamical system that captures the high-dimensional
dynamics.

The most common RBM is Proper Orthogonal Decompostion (POD), that
finds the ideal reduced system under the assumption that the higher-dimensional
system depends linearly on the lower-dimensional one. For most systems this is
however not true and this is why neural network-based approaches have become
popular in recent years; these are not constrained by the linear nature of the
POD.

In addition, past investigations have also shown the importance of consider-
ing the Hamiltonian structure of the high-dimensional system when construct-
ing the low-dimensional basis. The symplectic counterpart to POD is known as
Proper Symplectic Decomposition (PSD). It has proven remarkably effective for
e.g. the linear wave equation, but fails for stronly non-linear systems.

In this presentation we want to elaborate on the shortcomings of existing
approaches, especially regarding the solution of non-linear Hamiltonian PDEs,
and present an alternative. This will among other things involve Optimization
on Manifolds, a topic that has generated a lot of interest in recent years in the
Machine Learning community.
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