
Text books on fusion research

M. Kaufmann: Plasmaphysik und Fusionsforschung“ , Springer 2013 
(German only) 

R.J.Goldston, P.H. Rutherford „Introduction to Plasma Physics“ 
(CRC Press English 1995, Springer German 1998)

F. Chen Introduction to Plasma Physics and Controlled Fusion (Springer 
2019)

J. Freidberg. Plasma Physics and Fusion Energy (Cambridge 2008)

J. Wesson „Tokamaks“ (Oxford 2011)



Bi
nd

in
g 

en
er

gy
 [M

eV
]/n

uc
le

on

Mass number

Gain of energy due to nuclear fusion



How does the sun produce energy?

 

• 18th century: sun burns coal?

Given the mass  Ms~2 1030 kg, sun‘s life time would be ~4600 years (but 
age of the earth already known  to be a few billion years)

• 19th century (Helmholtz): gravitational energy?

Sun makes use of gravitational energy, released by slow contraction: life 
time ~19 Mio years, still not enough

• 20th century (Rutherford 1923) fusion of 4 protons?

But low probability of simultaneous collision of 4 protons

Tunnel effect not yet know, thus temperature was too low given the large 
Coulomb repulsion
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Proton chain in the sun and in small stars  (T<2keV)

First reaction very slow, as weak 
interaction involved

p+p®D+e++n
D+p® 3He+g

3He+ 3He® 4He+2p

600 Mio tons per second protons 
fused to 596 Mio tons 4He

4 1H+ + 2e- → 4He2+ + 2νe     +26.7 MeV



At higher temperatures fusion to heavier elements

Bethe-Weizsäcker-cycle for hot stars (T > 30 Mio K), above 1.5 
times the mass of the sun

Energy ~T20

(pp chain ~T4)
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(1) D + D => 3He (0,8) + n (2,5)
=> T (1) + p (3)

(2) D + 3He => 4He (3,7) + p (14,7)
(3) D + T => 4He (3,5) + n (14)
(4) p + 11B => 3× 4He (3×2,9)

Possible fusion reactions: fusion power density

in parentheses amount of energy 
released (in MeV)

Cross section for D-T reaction 
about 25 orders of magnitude 
larger than that of proton chain
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(1) D + D => 3He (0,8) + n (2,5)
=> T (1) + p (3)

(2) D + 3He => 4He (3,7) + p (14,7)
(3) D + T => 4He (3,5) + n (14)
(4) p + 11B => 3× 4He (3×2,9)

Possible fusion reactions: fusion power density

most promising

Recently more often 
promised, but very unlikely
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Tritium breeding

7Li + n => 4He + T + n  (-2,5)

6Li + n=> 4He  + T  (+ 4,8)

Lithium isotopes: 

• 93% 7Li
• 7%   6Li

Neutron multiplier: Pb or Be



Cb-Potential
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Miminal energy needed to overcome Coulomb repulsion

Only after discovery of the tunnel effect fusion well processes understood:

already significant reaction rates at 10…20 keV



Why has the reaction D-T a large cross section  at 
relatively low tempertures?

energy level diagram of unstable He5
2

5He
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resonant mechanism!

4He+n

energy gain: 0.89 MeV

D-T mass equivalent by  
64 keV below excited 5He 
state



Fusion vs. Coulomb Collisions
(or why we need a thermal plasma)
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Þ Coulomb cross section depends strongly on particle energy : ~ 1/Wkin2



T beam on target of deuterium ?

Assume T energy: 100 keV

Mean free path for fusion reactions: 2.9 1027 m/n[m-3]

Mean free path for Coulomb collision: 1.9 1022 m/n[m-3]

Orders of magnitude more Coulomb collisions than fusion 
reaction

Need to confine “thermal” plasma



Plasma, the fourth state of matter

• free electrons and ions
• good electrical conductivity 
• long range forces 
• high thermal conductivity 
• forces due to magnetic fields





Quasi neutrality
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Poisson equation

For particle densities of about 1016 m-3 a shift of all electrons by about 10 
cm corresponds to a voltage of about 2 Mio V

10 cm

Macroscopic (> mm ... cm) charge separation in plasmas impossible!
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Local deviations from quasi neutrality (microscopic scales) -> re-ordering of 
charged particles such that electric fields are screened on macroscopic scales

Also external fields are screened
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Cb-Potential
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Debye Screening

r << lD: Coulomb-Potential

r >> lD: outside Debye length only very small electrical



Inside Debye length charge separation possible
-> Plasma extensions has to be large compared to  Debye length
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fusion plasma
(10 keV, 1020m-3) 75 µm 2×108

technical plasma
(5 eV, 1017m-3) 50 µm 6×104

astrophysical
Plasma
(1 eV, 10 m-3)

75 km 5×1011

dense plasma
(1,5 eV, 1024m-3) 0,01 µm

3
=limit to non-ideal 

plasmas

1 eV = 11600 K  bzw.  10 keV~100 Mio K



Plasma properties

ne = Z ni = strict quasi neutrality

L >> lD = system size large compared to Debye length

Ntot >> ND   =  sufficient number of particles in the system



To overcome the Coulomb barrier, we need a thermal plasma
as the cross section for Coulomb collisions is larger than the fusion cross 

section (>100 times)!

Fusion cross section in a thermal plasma:

Centre of mass-system:

Er=1/2 mr u2



Fusion cross section in a thermal plasma:

Er=1/2 mr u2



Thermal plasma with 10 …. 20 keV needed for gaining energy from 
fusion reactions

Cross section:

in thermal plasma
~ T2
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Deuterium-Tritium-Fusion

How is energy gain QDT distributed to fusion products?

D-T fusion: 

Fusion power

highest fusion power for nD:nT = 1: 1
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Deuterium-Tritium-Fusion

momentum conservation: Energy conservation:

As momentum of the particles prior to 
fusion reaction is negligible

Follows from momentum and energy conservation 

How is energy gain QDT distributed to fusion products?
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Deuterium-Tritium-Fusion: energy of fusion products

Energy conservation:momentum conservation:

En=4/5 x 17,5 MeV=14.1 MeV                         EHe= 1/5 x 17,5 MeV=3.5 MeV
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Energy gain is distributed to fusion products according to:



Power balance – Lawson criterion

power loss :

:Et Energy confinement time (characteristic cooling down time)

power gain (of the plasma):

Only the energy carried by the alpha particles heat the plasma
(the neutrons don‘t interact with the plasma)

total thermal energy of the plasma

€ 

Ploss ≡
3/2⋅ (ne + nDT )⋅ kT

τE
⋅ Vol



Power balance – Lawson criterion

€ 

Ploss ≡
3/2⋅ (ne + nDT )⋅ kT

τE
⋅ Vol

€ 

Pfus,ch arg ed = Plosspower balance :

2~v T
DT

s (at T ~ 10 … 20 keV)Fusion cross section:

Quasi neutrality: ne = nDT

constTn Ee =×× t constTn Eie =×× t)0(Lawson criterion: 



Figure of merit in fusion research

ne T tE

T



Inertial fusion

ntE and T are fixed, but pressure p=nT is free to choose

Inertial fusion:
• Fast heating with laser or  
Heavy ion beam
• confinement due to inertia
(ion sound wave time scale)

• Miniature explosion

n large (1031 m-3), tE small (10-10 s) 
Þ pressure comparable to the solar core (!) 



Ignition condition changes in the presence of impurities

constTn Ee =×× tLawson criterion                                             achieved for ”pure” plasmas: ne=nDT

• Actually what counts for fusion reaction is nDT

• In reality, not only D,T ions, but at least also He, and in addition 
impurities due to interaction with wall materials

With impurity ions Lawson criterion will be modified by impurity ions for two reasons:

Dilution: 
at same plasma pressure 

p~neT less D-T ions

Radiation:
mainly bremsstrahlung 
(but also line radiation)
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Ignition condition: Effect of dilution

„dilution“ due to  impurity ions:
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Example:

10% He, 2% C

1 = fDT+0.2+0.12

fDT = 0.68



Ignition condition: Effect of dilution

at the same pressure less D-T-ions with significant influence on fusion power:

Example:

10% He, 2% C

fDT = 0.68

Fusion power reduced 
by factor of 2
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Energy balance, incl.radiation losses: 

:*Et energy confinement time, corrected for radiation losses



He content
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He content
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(1)/(2): 

Combine energy and particle balance and solve for fHe:



He content
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With P-Prad=
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Important: particle confinement time needs to be sufficiently short

He content

Experience:
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Now include radiation losses:

Bremsstrahlung:

Effective charge number:

Main contributions: Bremsstrahlung and line radiation
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Bremsstrahlung:

Power balance (incl. radiation losses):

:*Et energy confinement time, corrected for radiation losses
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r= tp/ tE
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Requirements for a reactor

extern
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Q = 1 break even (definition)

Q ³ 30..40 minimal value for 
economical reactor

Q = ¥ fully ignited plasma



Cold fusion ?

1989 Pons and Fleischmann claimed:

• fusion of hydrogen (protium, deuterium, tritium) nuclei in palladium 
during electrolysis

• their explaination: lower Coulomb barrier if hydrogen in solid state

• However: not reproducible, explaination wrong



Myonic hydrogen:

Binding length: mm
m
maa e 1311

0 105.2207/103.5 -- ×»×==
µ

Probability for tunneling is increased: reaction time 10-10s

Add myons to D2T2-gas mix:

•Myons slowed down by collisions with molecules

•Formation of D2, T2 and D-T molecules

Myon-catalysed fusion

Myons: catalyst



Myon catalysed fusion

• generate myons in accelerator (3 GeV)

• Myons decay with ~2 10-6 s

• Slow down in D2T2 gas mix , time for building DµT: 10-9 s

• Myon could catalyse about  2000 fusion reactions

problem: competing reaction (probability:  0.6%)

Probability that myon „survives“ N reactions:  (1 - 0.006) N ~ 1 - 0.006 N

One myon  can theoretically catalyse  only N = 1/0.006 = 170 fusion reactions

(in experiment: about 100)

no positive energy balance
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2D + 3T à 4He (3.5MeV) + n (14.1MeV) + 17.6MeV

2D + 3He à 4He (3.7MeV) + p (14.6MeV) + 18.3MeV (but: D-D reaction and 3He availability)

p + 11B à 34He + 8.7MeV

Neutron-free fusion reactions

Parameter\Reaction D-T D-He3 D-D H-B11

optimum composition for 
maximum fusion power at given 

pressure (Te=Ti)
1:1 3:2 1:1 3:1

maximum fusion power density at 
constant pressure (rel.units) 1,00 0,02 0,04 0,0013

maximum ratio <σv>/T2 1,00 0.022 0.013 0,008

burn temperature[keV] optimized 
for power density at given 

pressure
15,00 50,00 20,00 140,00

minimum required nTτ for 
ignition (rel.units) 1 11 16 100
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also the impurity profiles play a role:

central
fueling

(pellets)

gas puff


