
Recent progress in ICRF experiments on EAST

W. Zhang*, G. Antar, Y. Cheng, X. Deng, Q.S. Ju, Y. Kazakov, L.N. Liu, 

Y. Z. Mao, J. Ongena, C.M. Qin, L. Wang, Y.S. Wang, T. Wouters, H. 

Yang, S. Yuan, K. Zhang, X.J. Zhang, the EAST team

*Email: zw@ipp.ac.cn 

2025-05-20

25th Topical Conference on Radio-Frequency Power in Plasmas, Germany

Institute of plasma physics, Chinese Academy of Sciences (ASIPP)

mailto:zw@ipp.ac.cn


2

Outline

➢ Upgrades of EAST-ICRF system

➢ Increase of ICRF coupling and absorption

➢ ICRF experiments for multi-physics studies
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EAST-ICRF system

1. ICRF antenna with 

low 𝑘//

3. Antenna phasing 

measurement and 

control

2. Water cooling of 

limiter and Faraday 

screen

4. Matching  and load-variable 

tolerance transmission system 

1. Better coupling

2. Spectrum control

3. Water cooling

4. Fast impedance matching and load-variation tolerance transmission system
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Power spectrumAnt. structure

New 2-strap antennas
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Ip

ICRF

N-port

Bt

LH2 (4.6GHz) NBI 2R

ECRH
1-4

NBI 2L

NBI 1L

NBI 1R

ICRF

I-port

LH1

(2.45GHz)

2MW per ICRF-antenna

New 2-strap antennas

IC~4MW, EC~3MW, LH~4MW, NBI~6MW
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Real-time matching

Example
Real-time impedance matching of ICRF system:

➢ Impedance measurement, motor controlling;

➢ Both vacuum and plasma situation

➢ matching achieved within 1 second;

L.N. Liu, Rev. Sci. Instrum (2024)

Wednesday-04 

L.N. Liu poster
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ICRF N-ant. = 1.8MW ICRF N-ant. = 1.8MW

Li-coated W-wall Boron-coated W-wall

ICRF heating with Li/Boron-coated wall

𝛿𝑊𝑀𝐻𝐷=70kJ

𝛿𝑇𝑖=0.15keV

𝛿𝑇𝑒=2.0keV

𝛿𝐻98=0.36

EC=1.4MW, LH=2.8MW EC=2.0MW, LH=2.0MW

Same Bt, Ip, ne, q95

𝛿𝑊𝑀𝐻𝐷=32kJ

𝛿𝑇𝑖=0.15keV

𝛿𝑇𝑒=0.4keV

𝛿𝐻98=0.12

Wednesday-14

H. Yang Poster
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Diagnostics near antenna

Strap current probes 

  → ICRF phasing

Transmission voltage probes

  → ICRF coupling

Langmuir probes 

 → ne in front of antenna

Magnetic probe array

 → ICE instabilities

FILD probe

 → Fast ion lost near antenna

Doppler backscattering system 

  → Core/edge turbulence 

ICE 

probes

FILD probe

Langmuir 

probes



9

Outline

➢ Upgrades of EAST-ICRF system

➢ Increase of ICRF coupling and absorption

➢ ICRF experiments for multi-physics studies
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Coupling improved by decreasing antenna 𝑘||

New 2-strap antenna with low-𝒌|| : 

→ increases strap-distance from 0.225 m to 

0.425 m

→ decreases 𝑘|| from 13-14 𝑚−1 to 7.5 𝑚−1

→ decreases cut-off density from 8× 1018 𝑚−3 to 

2.8× 1018 𝑚−3

→ increases coupling resistance by a factor of 2

ICRF coupling: decrease 𝑘||
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➢ New method: 

Shifting striking point to increase coupling

➢ Mechanism:

Interplay between divertor closure and drifts 

→ More particles trapped between 

separatrix and vertical divertor wall 

→ Divertor recycling increase

→ SOL density increase

Coupling improved by 

decreasing 𝒅𝒆𝒗𝒂𝒏

ICRF coupling: strike-point optimization
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ICRF coupling: local gas puffing

➢ Coupling resistance increased by midplane local gas 

puffing (~12e22 el/s) by a factor of 2

➢ EMC3-EIRENE + RAPLICASOL simulation results in good 

agreement with experiments

100%

3D SOL density simulation
Coupling resistance

Coupling improved by 

decreasing 𝒅𝒆𝒗𝒂𝒏
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ICRF coupling: other methods

(a)Decrease SOL width 

(𝛿𝑅𝑐 ~ 34%)

(b) Increase core density

(𝛿𝑅𝑐 ~ 44%)

(c) Change strike point position

(𝛿𝑅𝑐 ~ 70%)

(d) Optimize antenna phasing

(𝛿𝑅𝑐 ~ 10%)

Relative increase of coupling resistance：
𝛿𝑅𝑐 = Τ(𝑅𝑐 − 𝑅𝑐0) 𝑅𝑐0

Coupling improved by 

decreasing 𝒅𝒆𝒗𝒂𝒏

W. Zhang, Nuclear Fusion (2024)
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D(H) minority: Bt and X(H) optimization

Good ICRF absorption when 

➢ core X(H)=5%-10% and edge X(H)~10%

➢ Bt=2.45-2.50T (on-axis heating)

➢ X(H) scan

➢ Bt scan
  Bt > 2.45T: low-field side

  Bt = 2.45T: on-axis heating

  Bt < 2.45T: high-field side
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D(H) minority heating: ITER-relevant scenario 

- Work with Y. Kazakov 

and J. Ongena
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ICRF-NBI 

synergetic heating

1.5 MW ICRF + 2.8 MW NBI synergetic heating increases:

➢ 𝛽𝑝 ~36%, 𝑊𝑀𝐻𝐷  ~35%, 𝑇𝑖 ~20%, 𝑌𝑛 ~100%

➢ Tail of fast ion distribution

(c)

ICRF-NBI synergetic heating
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Scenario #1: D-(3He)-H 

H=85%, D = 13%, 
3He=1%

Scenario #2: D-(DNBI)-
3He 

3He = 28%, D = 41%, 

DNBI = 3% (40-65 keV)

3-ion heating schemes

Experiments scheduled in June-July 2025
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➢ Upgrades of EAST-ICRF system

➢ Increase of ICRF coupling and absorption

➢ ICRF experiments for multi-physics studies

⚫ Various Alfvén instabilities

⚫ Sawtooth control

⚫ Turbulence suppression

⚫ ICWC in ITER relevant conditions 
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Alfvén instability: experimental observation 

➢ f = 80 kHz (n = 2) 

is BAE: depends 

on Te; independent 

of ne

➢ 134 kHz (n = 2)

and 157 kHz (n = 3)

are TAE:

𝑓0 ∝ 𝑣𝐴∝ Τ𝐵 𝜇0𝑛𝑒

➢ Alfven Eigenmode (AE) 

excited by ~2.4MW ICRH

➢ TAEs exhibit a strong 

dependence on H98 factor 

and can only be excited 

when it is larger than 1.15
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Alfvén instability: integrated simulations

➢ Most fast ions are banana orbits with bouncing tips near cyclotron resonance

➢ TAEs exist in plasma core and edge

➢ f=134 kHz (n=2) is in good agreement with simulations 

➢ The driving originated from the spatial gradient of the fast H-ion distribution

Simulation codes: TRANSP/TORIC+ASCOT+NOVA-C/GTC 

TORIC ASCOT NOVA NOVA-C/GTC
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Alfvén instability: high frequency AE and ICE

➢ High frequency AE excited 

during minority heating
➢ Core ICE excited by D ions ➢ Edge ICE excited by T ions 

No NBI used in this discharge

#127012
#139979

#127624

L.N. Liu, Nuclear Fusion (2024) H.P. Zhang, Nuclear Fusion (2024)
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Sawtooth control: ICRF power modulation

#116131 (reference case) : 

Constant power PIC ~1.3 MW

#116137 (power modulation) : 

  PICRF ~0.4-1.2 MW

➢ Sawtooth period decreased 

from T = 0.24s to 0.1s

➢ Mechanism: change of fast ion 

beta inside q=1 surface

TRANSP & M3D-K simulations ongoing

— PhD student Z. Wang
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➢ Sawtooth period decreased 

from T = 0.14s to 0.1s

➢Mechanism: change of 

passing fast ion distributions

#116129 (reference) : 

Phasing: Φ=180o

#116140 (phasing change) : 

Phasing Φ=-90°

Sawtooth control: ICRF phasing change

TRANSP & M3D-K simulations ongoing

— PhD student Z. Wang
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Turbulence suppression: core plasma

During ICRF power modulation:

➢ Excitation of TEM by Tungsten impurity

➢ Stabilization of turbulence by fast ions

New V-band DBS system 

— PhD student S.C. Qiu

Turbulence decreases during ICRF 

power ramping up
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Turbulence suppression: edge plasma

New reciprocating probe

— PhD student L.X. Li
➢ Effect of ICRF on 

turbulence at different 

radial locations were 

measured

➢ Large-scale, low-

frequency turbulence 

are reduced by ICRF

➢ Poloidal shear flow in 

the edge is measured: 

possible mechanism

W. Zhang, Physics of Plasmas (2024)

#107111

g, i, j, l → Vf

a, b, c, d, e, h, k → Isat
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ICWC in ITER relevant conditions 

➢ heating antenna: 

     37MHz, 200 kW, Bt ~0.95 T

➢ heating antenna: 

     37 MHz, 200 kW, Bt~2.5 T

➢ cleaning antenna: 

    27 MHz, 45 kW, Bt ~2.5 T

➢ Plasma is more brightness with heating antenna ICWC than that with cleaning antenna

➢ D-ICWC is sensitive to working gas pressure and heating power, and needs 100kW to build 

plasma; normal working power is larger than 200kW - Work with T. Wauters
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Conclusions

EAST-ICRF system

➢ Two 2-strap antenna with low k|| installed, with a total heating power up to 4MW

➢ Capacitances installed in addition to liquid stub-tuners, allowing real-time fast 

impedance matching

ICRF edge coupling and core absorption

➢ ICRF coupling improved by local gas puffing, optimization of gap-out distance, core 

density, divertor strike-point position, antenna phasing etc.

➢ Power absorption increased by optimization of Bt, X(H) and ICRF-NBI synergetic 

heating

EAST-ICRF system and heating
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Conclusions

Alfvén instability
➢ Various AEs and ICEs observed in plasmas with Lithium or Boron-coated wall

➢ Low-frequency TAE driven by radial gradient of fast ion distribution

Sawtooth control
➢ Sawtooth suppression by ICRF power modulation and ICRF phasing change

➢ Due to change of fast ion beta and fast ion distribution

Turbulence suppression
➢ Core: stabilization of turbulence by fast ions, possibly due to changes in ITG/TEM

➢ Edge: decrease of low-frequency turbulence, possibly due to poloidal shear flow

ICWC
➢ First time to use heating antenna for ICWC on EAST, obtained more brightness plasma

ICRF multi-physics studies
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