

Recent progress in ICRF experiments on EAST

W. Zhang*, G. Antar, Y. Cheng, X. Deng, Q.S. Ju, Y. Kazakov, L.N. Liu, Y. Z. Mao, J. Ongena, C.M. Qin, L. Wang, Y.S. Wang, T. Wouters, H. Yang, S. Yuan, K. Zhang, X.J. Zhang, the EAST team

*Email: zw@ipp.ac.cn

2025-05-20

Institute of plasma physics, Chinese Academy of Sciences (ASIPP)

Outline

Upgrades of EAST-ICRF system

- Increase of ICRF coupling and absorption
- ICRF experiments for multi-physics studies

EAST-ICRF system

- 1. Better coupling
- 2. Spectrum control
- 3. Water cooling
- 4. Fast impedance matching and load-variation tolerance transmission system

1. ICRF antenna with low $k_{//}$

2. Water cooling of limiter and Faraday screen

3. Antenna phasing measurement and control

New 2-strap antennas

Old 2-strap antenna

New 2-strap antennas

2MW per ICRF-antenna

IC~4MW, EC~3MW, LH~4MW, NBI~6MW

Real-time matching

Shot 127244

(a)

Real-time impedance matching of ICRF system:

- Impedance measurement, motor controlling;
- Both vacuum and plasma situation

Example

n^e(m⁻³)³

15

ICRF heating with Li/Boron-coated wall

Same B_t, I_p, n_e, q₉₅

Li-coated W-wall

Boron-coated W-wall

Wednesday-14 H. Yang Poster

Diagnostics near antenna

Strap current probes \rightarrow ICRF phasing

- Transmission voltage probes \rightarrow ICRF coupling
- Langmuir probes $\rightarrow n_e$ in front of antenna

Magnetic probe array

 \rightarrow ICE instabilities

FILD probe

- \rightarrow Fast ion lost near antenna
- Doppler backscattering system \rightarrow Core/edge turbulence

Outline

> Upgrades of EAST-ICRF system

- Increase of ICRF coupling and absorption
- > ICRF experiments for multi-physics studies

ICRF coupling: decrease $k_{||}$

Coupling improved by decreasing antenna $k_{||}$

New 2-strap antenna with $low-k_{||}$:

 \rightarrow increases strap-distance from 0.225 m to 0.425 m

 \rightarrow decreases $k_{||}$ from 13-14 m^{-1} to 7.5 m^{-1}

 \rightarrow decreases cut-off density from 8× 10^{18} m^{-3} to 2.8× 10^{18} m^{-3}

 \rightarrow increases coupling resistance by a factor of 2

ICRF coupling: strike-point optimization

Coupling improved by decreasing *d*_{evan}

> New method:

Shifting striking point to increase coupling

> Mechanism:

Interplay between divertor closure and drifts

 \rightarrow More particles trapped between separatrix and vertical divertor wall

- \rightarrow Divertor recycling increase
- \rightarrow SOL density increase

ICRF coupling: local gas puffing

Coupling improved by decreasing *d*_{evan}

- Coupling resistance increased by midplane local gas puffing (~12e22 el/s) by a factor of 2
- EMC3-EIRENE + RAPLICASOL simulation results in good agreement with experiments

3D SOL density simulation

ICRF coupling: other methods

Coupling improved by decreasing *d*_{evan}

(a) Decrease SOL width

 $(\delta R_c \sim 34\%)$

(b) Increase core density

 $(\delta R_c \sim 44\%)$

(c) Change strike point position

 $(\delta R_c \sim 70\%)$

(d) Optimize antenna phasing

W. Zhang, Nuclear Fusion (2024)

Relative increase of coupling resistance: $\delta R_c = (R_c - R_{c0})/R_{c0}$

D(H) minority: B_t and X(H) optimization

Good ICRF absorption when

➤ core X(H)=5%-10% and edge X(H)~10%

➢ B_t=2.45-2.50T (on-axis heating)

 $> B_t \text{ scan}$ $B_t > 2.45T: \text{ low-field side}$ $B_t = 2.45T: \text{ on-axis heating}$ $B_t < 2.45T: \text{ high-field side}$

D(H) minority heating: ITER-relevant scenario

ICRF-NBI synergetic heating

ICRF-NBI synergetic heating

(a) Resonance heating **Resonance** layer Antenna lon orbit

1.5 MW ICRF + 2.8 MW NBI synergetic heating increases:

 β_p ~36%, W_{MHD} ~35%, T_i ~20%, Y_n ~100%

Tail of fast ion distribution

3-ion heating schemes

[MW/m³/MW

[MW/m³/MW_{abs}

Experiments scheduled in June-July 2025

Outline

- Upgrades of EAST-ICRF system
- Increase of ICRF coupling and absorption
- ICRF experiments for multi-physics studies
- Various Alfvén instabilities
- Sawtooth control
- Turbulence suppression
- ICWC in ITER relevant conditions

Alfvén instability: experimental observation

Alfven Eigenmode (AE) excited by ~2.4MW ICRH

- > f = 80 kHz (n = 2)
 is BAE: depends
 on T_e; independent
 of n_e
- > 134 kHz (n = 2) and 157 kHz (n = 3) are TAE: $f_0 \propto v_A \propto B / \sqrt{\mu_0 n_e}$

TAEs exhibit a strong dependence on H₉₈ factor and can only be excited when it is larger than 1.15

Alfvén instability: integrated simulations

Simulation codes: TRANSP/TORIC+ASCOT+NOVA-C/GTC

- > Most fast ions are banana orbits with bouncing tips near cyclotron resonance
- TAEs exist in plasma core and edge
- f=134 kHz (n=2) is in good agreement with simulations
- > The driving originated from the spatial gradient of the fast H-ion distribution

Alfvén instability: high frequency AE and ICE

0.5

21

Sawtooth control: ICRF power modulation

#116131 (reference case) : Constant power P_{IC} ~1.3 MW

- #116137 (power modulation) : P_{ICRF} ~0.4-1.2 MW
- Sawtooth period decreased from T = 0.24s to 0.1s
- Mechanism: change of fast ion
 beta inside q=1 surface

TRANSP & M3D-K simulations ongoing — PhD student Z. Wang

Sawtooth control: ICRF phasing change

- #116129 (reference) : Phasing: Φ=180°
- #116140 (phasing change) : Phasing Φ=-90°
- Sawtooth period decreased
 - from T = 0.14s to 0.1s
- Mechanism: change of passing fast ion distributions

TRANSP & M3D-K simulations ongoing — PhD student Z. Wang

Turbulence suppression: core plasma

During ICRF power modulation:

- Excitation of TEM by Tungsten impurity
- Stabilization of turbulence by fast ions

New V-band DBS system — PhD student S.C. Qiu

Turbulence suppression: edge plasma

New reciprocating probe — PhD student L.X. Li

g, i, j, $I \rightarrow V_f$ a, b, c, d, e, h, $k \rightarrow I_{sat}$

- Effect of ICRF on turbulence at different radial locations were measured
- Large-scale, Iowfrequency turbulence are reduced by ICRF
- Poloidal shear flow in the edge is measured: possible mechanism

W. Zhang, Physics of Plasmas (2024)

ICWC in ITER relevant conditions

- > Plasma is more brightness with heating antenna ICWC than that with cleaning antenna
- > D-ICWC is sensitive to working gas pressure and heating power, and needs 100kW to build plasma; normal working power is larger than 200kW - Work with T. Wauters
- cleaning antenna: 27 MHz, 45 kW, B_t ~2.5 T

heating antenna: 37MHz, 200 kW, B_t ~0.95 T

heating antenna: 37 MHz, 200 kW, B_t~2.5 T

Conclusions

EAST-ICRF system and heating

EAST-ICRF system

- > Two 2-strap antenna with low k_{\parallel} installed, with a total heating power up to 4MW
- Capacitances installed in addition to liquid stub-tuners, allowing real-time fast impedance matching

ICRF edge coupling and core absorption

- ICRF coupling improved by local gas puffing, optimization of gap-out distance, core density, divertor strike-point position, antenna phasing etc.
- Power absorption increased by optimization of B_t, X(H) and ICRF-NBI synergetic heating

Conclusions

ICRF multi-physics studies

Alfvén instability

Various AEs and ICEs observed in plasmas with Lithium or Boron-coated wall

Low-frequency TAE driven by radial gradient of fast ion distribution

Sawtooth control

Sawtooth suppression by ICRF power modulation and ICRF phasing change

Due to change of fast ion beta and fast ion distribution

Turbulence suppression

> Core: stabilization of turbulence by fast ions, possibly due to changes in ITG/TEM

> Edge: decrease of low-frequency turbulence, possibly due to poloidal shear flow

ICWC

First time to use heating antenna for ICWC on EAST, obtained more brightness plasma