

RF power experiments in WEST to prepare for next-step fusion device operation

R. Dumont, on behalf of the WEST team* CEA, IRFM, F-13108 Saint Paul-lez-Durance, France * see <u>http://west.cea.fr/WESTteam</u>

<u>Special thanks to:</u> T. Fonghetti, P. Maget, P. Manas, L. Colas, R. Diab, J. Hillairet, E. Lerche, S. Mazzi, C. Perks

WEST: a testbed for tungsten-related aspects of next-step device preparation

Tungsten environment

- Actively cooled ITER-grade tungsten divertor
- Inner / outer bumpers
 - W coated until mid-2020,
 - BN at mid-plane until spring 2024,
 - Bulk W from autumn 2024

Long Pulse capability

- Superconducting magnets, nominal field B₀~3.7T
- Lower/Upper X-point, Double-Null configurations
- Bespoke radiofrequency (RF) systems

[Bucalossi, NF 2024]

Upper divertor W (15µm)/CuCrZr	Plasma volume : 15 m^3 R = 2.5 m, a = 0.5 m Max κ = 1.35 δ up to 0.5
Outer limiter W / BN ITER grade diver bulk W	tor
	Inner bumpers W / BN

WEST auxiliary power is exclusively supplied by radiofrequency sources

• WEST RF systems

- LHCD: non-inductive current drive
 - FAM launcher (4MW, n_{//}~2)
 - PAM launcher (3MW, n_{//}~1.7)
 - Frequency: 3.7 GHz
- ICRF: bulk heating, energetic ion generation
 - 3 load-resilient (internal) conjugate-T antennas
 - 9MW/30s 3MW/1000s
 - Usually D(H) minority scheme
 - Frequency: 48-63 MHz
- ECRH/CD: bulk heating, non-inductive current drive
 - 1MW \rightarrow 3MW, started operation in 2025 (1MW)
 - Frequency: 105 GHz
- \rightarrow No torque injection (low rotation)
- \rightarrow Electron heating dominant

Outline

- 1. Long pulse scenarios based on LH power
- 2. Enhancing long pulse performance with RF power

Long pulse scenarios based on LH power

LHCD physics determines key parameters for noninductive current maximization

• Loop voltage drop when LH power is applied

$$-\frac{\Delta V}{V_{\Omega}} = f_{bs} + \eta_{LH} \frac{P_{LH}}{\bar{n}_e R I_p}$$

• LHCD efficiency (fit) $\eta_{LH} = 2.37 \times 10^{19} D^{0.3} Z_{eff}^{-0.12} \tau_E^{0.4}$

> [Goniche, AIP proc. 2005] [Fonghetti, NF 2025]

• Fraction of current driven by LH waves

$$\frac{I_{LH}}{I_P} \propto \frac{P_{LH}}{\bar{n}_e R I_p} \tau_E^{0.4}$$

Overheating of in-vessel components restricts operational domain in the presence of LH-driven electrons

- Electron ripple protections installed in upper part of vacuum chamber with adapted cooling pipes, surveyed in real-time by IR first wall protection monitoring system
- WEST Operating Instructions: maximum apparent IR temperatures on upper pipes set to 365°C
- Found to follow known electron ripple loss dependences: $T_{pipe} [^{\circ}C] = 134+678 P_{LH}[MW]^{1.07} I_{p}[MA]^{0.58} n_{13}[10^{19}m^{-2}]^{-2.24}$

Main LHCD actuator: toroidal phasing, plays a major role in lp controlled discharges

Peak n _{//0}		LH1		
		2.0	1.9	1.8
LH2	1.9	MHD	MHD	Untested
	1.8	MHD	Good	Pipe T°

- Disruption-inducing MHD instabilities triggered at low V_{loop} depending on toroidal phasing
- Clear effect on pipe temperature, consistent with LHdriven electron physics

Toroidal spectrum variations point towards complex non-linear discharge evolution

- Power required to sustain plasma current decreases with <n_{//0}>
- In apparent contradiction with current drive physics, which predicts LH efficiency proportional to $1/n_{//}^2$
- Strong influence of T_e profile, which results from
 - LH power/current source
 - Heat (and particle) transport

Pulse development requires description of heat source, transport, must include operational aspects

- High Fidelity Pulse Simulator (HFPS) based on JINTRAC/JETTO employed Optimization
 - Simplified model used for LHCD deposition profile [Dumont, PoP 2000], with experimental scaling law for current drive efficiency: $\eta_{LH} \alpha \tau_{E}^{0.4}$ [Goniche, AIP proc. 2005]
 - TGLF-sat2 model for turbulent transport [Staebler, PPCF 2020; Angioni, NF 2022]
- Elements included, with strong impact on available parameter space:
 - Greenwald density limit
 - Upper cooling pipe temperature interlock
 - Occurrence of q-profile reversal minimized at lower P_{LH} and/or larger I_{p}

A continuous progress in long pulse development, based on LH power since 2023

 Tore Supra LHCD efficiencies recovered, consistently with LUKE predicting no significant influence of W impurities on LHCD [Peysson, IAEA 2020]

Duration records achieved during C9 (2024)

- WEST pulse 59763
 - Duration: 364s
 - Energy injected/extracted: 1.15GJ (Energy record of WEST and Tore Supra at the time)
 - Double feedback-control (V_{loop} , V_{G0}), (I_p , P_{LH})
 - Plasma current 0.27MA
 - LH power ~3-3.5MW
 - Loop voltage: $3mV \rightarrow could in principle last >1100s$
 - H_{98,y2}~1, β_p~2, β_N~0.8
 - No particular issue related to tungsten accumulation
 - Increase of density at ~300s, caused by outgassing of remote elements in vacuum vessel
 - \rightarrow I_p could not be maintained despite increase of LH power by feedback control system

[Dumont, APS 2024]

Duration records during C11 (2025)

- WEST pulse 61299
 - Duration: 1337s
 - Energy injected/extracted: 2.61GJ (Current duration/energy record of WEST and Tore Supra)
 - Double feedback-control (V_{loop} , V_{G0}), (I_p , P_{LH})
 - Plasma current 0.23MA
 - LH power ~2MW. LH FAM coupler only (other long-duration pulses with both couplers)
 - Loop voltage: 0mV → fully non-inductive
 - H_{98,y2}~0.9, β_p~1.6, β_N~0.6
 - Mild MHD activity present during whole duration, degrading confinement
 - Quite resilient to external perturbations
 - Performed in H_2 and D_2 gases \rightarrow isotopic effect under study

Enhancing long pulse performance with RF power

Adding ICRH power in LH-dominated long pulses often induces radiative collapses

- The application of ICRF power on LH-dominated plasmas
 - Makes LH coupling more difficult
 - Often triggers sudden drops of T_{e0}
- Similar to radiative collapses sometimes observed in ICRH pulses. Chain of events:
 - Increase of power radiated in the plasma core, not compensated by electron heating from ICRH \rightarrow drop of T_{e0} [Maget, PPCF 2023]
 - Outward displacement of LH driven current as a result
 [Ostuni, NF 2022]
 - Current profiles becomes hollower and eventually triggers MHD instabilities
- ICRF-driven energetic ions expected to impact W accumulation
 - Poloidal asymmetry + induced rotation \rightarrow W peaking
 - Core electron heating \rightarrow balance radiated power
 - \rightarrow RF simulations required

Energetic ion calculations in medium size devices must retain finite orbit width effects

- Numerical study of ICRH-only pulse 55605, which collapses at t~5.6s [Maget, PPCF 2023]
- Zero-orbit width (ZOW) calculations with EVE/AQL [Dumont, NF 2013] yield central power source on electrons very peaked, and significantly larger than radiated power → should prevent radiative collapse
- A surrogate model is designed to enlarge the ICRH power source profile based on averaged potato/banana widths
- Finite orbit width (FOW) compared to ZOW solution
 - Total energetic ion energy content only slightly changed
 - Core perpendicular energy significantly reduced
 → electron heating reduced
 - Also: anisotropy profile less peaked
 → weaker ICRH drive for tungsten peaking
- Still predicts power source on electrons approximately 4 times larger than central radiation (~0.5MW/m³)

Ripple losses of ICRF-driven ions

- Ripple losses estimated to be about 20% of the coupled ICRH power at collapse time in this discharge
- Power loss fraction increases ~linearly with ICRH power (as in Tore Supra) [Moiraf, NF 2023]
- Ripple losses modelled by truncating H distribution function over a given energy in EVE/AQL [also: Ph. Huynh, in preparation]

Loss of fast H impacts power deposited on electrons

 Losing 20% of the ICRH power induces a reduction by 50% of the power from minorities to electrons → compatible with estimated electron heating deficit (incl. ICRF-induced rotation)

Improving ICRF operation in WEST non-inductive discharges

- Energetic ions must supply central power to electrons but very energetic tails result in large ripple losses
- Increasing current/density has been shown to be efficient, but difficult to reconcile with non-inductive scenario requirements
- Increasing minority concentration induces global weakening of energetic ion tail
 - Decrease of central electron heating, but only limited (critical energy E_c~20keV for these conditions in WEST)
 - Must still ensure good single-pass damping rate → should not exceed ~15%
 - → optimization experiments ongoing
 [S. Mazzi, E. Lerche et al., ICRF optimization]
- Future Toroidal Wave Array (TWA) antenna expected to provide more flexibility (spectrum, poloidal phasing...) [J. Hillairet, this conference] [L. Kassem Hijazi, this conference]

EC power to enlarge parameter space, help increase performance in non-inductive regimes

 EC power available in next WEST: 1MW in 2025 → 3MW

- Applications to long-duration pulses
 - Central ECCD to control q-profile reversal [Fonghetti, NF 2025], improve overall CD efficiency → possibility to control current profile, operate at larger densities
 - Central ECRH against radiative collapses observed as density increased [Ostuni, NF 2022] or ICRF power applied [Maget, PPCF 2023]
 - Counterbalances central radiation in unstable range of electron temperatures (T $_{\rm e}{\sim}1.5{\text{-}3keV})$
 - Opens the possibility to use ICRF power, beneficial for MHD stability when V_{loop}~0 [Dumont, PPCF 2014]
 - "Anchors" LH deposition profile to plasma core [e.g., in EAST: Du, NF 2018; Li, NF 2023]
- H-mode access
- MHD control

. . .

Summary and prospects

LHCD power: the workhorse of non-inductive operation in WEST

- High sensitivity of I_p-controlled discharges to injected power spectrum
- Complex interplay between heat/particle transport / RF source requires advanced integrated modelling
- Pulses at ~280kA/3MW LHCD display good confinement, with outgassing issues (conditioning over time) Up to 364s/1.15GJ
- Pulses at ~230kA/2MW LHCD
 - Good confinement when both FAM/PAM LH couplers used simultaneously Up to 824s/1.93GJ
 - Degraded confinement with FAM launcher only (mild MHD throughout pulses) Up to 1337s/2.91GJ
- Topic not addressed in this presentation: superthermal electron transport studies [J. Cazabonne, this conference]

ICRH usage requires careful optimization when used in conjunction with LH power

- Simultaneous coupling challenging (as was the case in Tore Supra, even more so in W environments)
- Must prevent too energetic ion tails from developing at low densities/currents, whilst ensuring adequate core electron heating
- TWA expected an improvement over current conjugate-T antennas [J. Hillairet, this conference] [L. Kassem Hijazi, this conference]
- Topics not addressed in this presentation:
 - RF sheath effects and code validation [R. Diab, this conference] [L. Colas, this conference]
 - Argon pumpout experiments [C. Perks, this conference]
 - Ongoing ITER-relevant experiments: ICWC and IC-assisted breakdown [E. Lerche, J. Hillairet]

• EC power to enlarge parameter space, help increase performance in non-inductive regimes

- Central ECCD to control q-profile reversal, central ECRH against radiative collapses
- H-mode access