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Motivation

• High-frequency waves in plasma.
• Applications in plasma-wave heating1 and reflectometry

diagnostics2.

Problem setup:

• Strongly magnetized plasma (time-independent magnetic field).
• Time-independent electron plasma density.
• Time-harmonic electromagnetic wave launched into the plasma.
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Figure 2. On the left a poloidal section of DEMO with a HFS equatorial reflectometer ROI is marked. A
snapshot of the electric field in this ROI (G40), for a frequency of f = 43 GHz, appears on the right.

B0y (ωy � 0) are present, the TMz (Jz) plane is coupled to TEz and the TEz (Jx , Jy) plane to the
TMz. Forωx,ωy = 0, we revert to the uncoupled simultaneous description of O-mode and X-mode.
REFMULF uses a variation of the Xu-Yuan schema [10] with the modifications proposed in [15]
for extended long-run stability in time-dependent problems. A more detailed description of this
schema can be found in [16].

REFMULF not far from a full polarization 3D code. In fact if we overlay N TEz planes
intermediated by N − 1 TMz planes, instate dependency on z, e.g., J = J(x, y, z), and allow for
variation along the z axis (∂/∂z � 0), we obtain the bases of REFMUL3. For a more comprehensive
description refer to [16]. One major difference while implementing REFMUL3 is that one must start
thinking parallel. In order to have an usable 3D code we need a parallel kernel, parallel Input/Output
(I/O) and parallel visualization of the results. This goal is achieved in REFMUL3 by employing a
hybrid MPI/OpenMP parallelization with a 3D domain decomposition. This implementation shows
a good strong scaling behaviour on the MARCONI cluster at Cineca Italy [16, 17].

4 Examples of applications using REFMUL* codes

REFMULF is being used to assess the performance of the future PPR of DEMO reactor and to
evaluate how many views are necessary for a reconstruction of the plasma shape [14, 18]. In figure 2,
on the left, a poloidal section of DEMO appears with several possible positions of the PPRs’ access
to the plasma. The rectangular region marks the region-of-interest (ROI) for a simulation of a
reflectometer on the high field side at the equatorial plane. On the right, a snapshot of the electric
field taken at a frequency of f = 43 GHz is displayed for this ROI (G40). Multi-reflection structures
can be clearly seen. The red line shows the position of the separatrix.

– 4 –

We run simulations using experimental data:
• SymPDE to set up model
• PSYDAC to simulate the time-evolution of the electromagnetic field

1S. Heuraux et al.,“Simulation as a tool to improve wave heating in fusion plasmas”, Journal of Plasma Physics 81,2015.
2F. da Silva et al., “An overview of the evolution of the modeling of reflectometry diagnostics in fusion plasmas using
finite-difference time-domain codes”, Fusion Engineering and Design 202, 2024.

3Image from F. da Silva et al. 2019 JINST 14 C08003.
4https://github.com/pyccel/sympde
5https://github.com/pyccel/psydac
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State of the art and challenge

Numerical modeling is difficult:
1. high space resolution,
2. many time-steps,
3. complex geometries,
4. complex wave-plasma

interactions

F. da Silva et al. / Journal of Computational Physics 295 (2015) 24–45 25

Fig. 1. Contours at a given time of the positive part of the electric field, that is max(Ez, 0), of an ordinary wave (known as TM or O-mode) with a 
Gaussian-like shape in unperturbed plasma with a linear density profile (left) and with homogeneous turbulence of δn/nc = 5% (RMS value, with nc the 
density at the cut-off layer for ν = 40 GHz) where the sub-beams are present (right).

with a snapshot of a numerical calculation of a wave in a plasma in Fig. 1. The Gaussian shape is recovered at coarse scale 
using some time averaging, but at the same time very fine spatial scale details are visible. Since the energy of the wave is 
conserved during its propagation (we will prove this property for the model used in this work), it seems unavoidable to ask 
for similar energy preservation properties for the numerical methods in order to capture both the fine and coarse scales in 
the computations.

The previous example corresponding to beam broadening induced by wave propagation in turbulent plasma is illustrative 
of diagnostics and wave heating systems used in magnetized fusion plasmas. Hot topics for the ITER design concern the 
wavenumber resolution of the so-called Doppler reflectometry or on the choice of the probing frequency of the Coherent 
Thomson Scattering using X-mode as well as the beam widening induced by the turbulence on the electron cyclotron 
heating to determine whether neo-classical tearing modes inducing big islands can be controlled or not [21]. The same 
questions arise for the lower-hybrid heating system to evaluate correctly what is the wavenumber spectrum launched into 
the plasma in view of the efficiency prediction of the non-inductive current driven system and the definition of the energy 
deposition zone. In the near future, wave polarization changes will be a subject of great interest, as it is becoming with 
O–X mode heating scenario for the stellarator or tokamak [18], which are subject to anomalous reflection due to turbulence 
[22], and also for the new diagnostic concepts based on wave polarization changes induced by linear mode conversion or 
turbulence in inhomogeneous magnetized plasmas of space, astrophysics or fusion.

To our knowledge the state of the art of the computations done for such problems use simplified wave models taking 
into account only one physical mechanism (refraction in [21], diffraction effects in [31] and recently both in [16,17]) but 
not all the wave structure as a Maxwell’s equation solver with a linear current model can predict. This strongly questions 
the numerical stability of the simulations, indeed our numerical tests show a fundamental stability issue on extraordinary 
mode (also called TE or X-mode) which are more demanding in terms of stability than O-mode computations. Because 
an ideal scheme should be fast enough to reach the requirements stressed above for the comparison between theory and 
full-wave simulations, we are strongly interested in explicit FDTD (Finite Difference Time Domain) schemes, indeed they are 
still the cheapest in terms of CPU. Many FDTD methods were developed to improve the performances and the stability in 
the past few years, such as EJ collocated FDTD [34], Runge–Kutta exponential time differencing formulation (RKETD) FDTD 
[20], matrix exponential (ME) FDTD [14], and exponential time differencing (ETD) FDTD [15]. Unfortunately they cannot be 
easily used to model the general dispersive media. On the other hand, in order to overcome the Courant–Friedrich–Levy 
(CFL) constraint of the conventional FDTD method, the one-step leapfrog ADI-FDTD method has been developed [4]. It 
originates from the conventional ADI-FDTD for which we refer to [35]. We finally mention the fact that conservation of 
energy for a fourth-order FDTD scheme is addressed in [19], and that massive direct simulations of wave propagation in a 
different physical context can be found in the recent references [12,10,23]. A recent variant of FDTD methods with higher 
computational efficiency is the implicit method [27] or [30,29], the latter being proved to be stable for varying coefficients. 
However ITER size simulations for the high frequency cases with small spatial scale turbulence that we consider in Fig. 1
seem not reachable using implicit schemes such as [30]. The reason is the very large number of cells (typically ≈ 103d with 
d = 2, 3 the dimension of the problem) which induces severe CPU constraints. This is why we study in this work the low 
cost explicit version of the Yee scheme coupled with a linear current. The stability of the method will be performed with 
an energy analysis which seems to us very convenient to handle strong gradients of the coefficients.

The general model problem considered in this work is the non-stationary Maxwell system
�−ε0∂tE+ curlH = J

μ0∂tH+ curlE = 0
(1)

coupled with a linear equation for the electronic current density J = eNeue ,

Often solved in Frequency-Domain or Time-Domain (richer physics) but
• Finite-Difference on Cartesian grids,
• low order and long-time stability is an issue3.

→ Our discretization is high-order and structure-preserving, based on B-spline FEEC

3F. da Silva, M. Campos-Pinto, B. Després, S. Heuraux, “Stable explicit coupling of the Yee scheme with a linear
current model in fluctuating magnetized plasmas”, Journal of Computational Physics 295, 2015.
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The cold-plasma model

• in time-domain
• Silver-Müller (aka impedance or Robin) boundary conditions



Time-domain problem

In normalized units (wrt. incoming wave frequency ω0), the time evolution of the
electromagnetic field (E,B) and the current density J is given by

∂tE − curlB = −ω̂pY ,

∂tB + curlE = 0,
∂tY + ω̂cY × b0 = ω̂pE − ν̂eY ,

(1)

where Y = ω0ω̂p/4πJ, the normalized electron plasma and cyclotron frequencies are

ω̂p(x) =
√

4πe2ne(x)/(meω2
0), ω̂c(x) = e|B0(x)|/(mecω0),

• ne(x) is the background electron plasma density,

• B0(x) is the background magnetic field with b0 = B0/|B0|,

• e is the elementary charge, me is the electron mass

• ν̂e ≥ 0 is the normalized electron-collision frequency.
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Boundary conditions

• Instead of simulating the antenna, we prescribe a field on the boundary.
• The waves can leave the domain freely Fusion Engineering and Design 202 (2024) 114354

5

F. da Silva et al.

Fig. 2. On top, a snapshot of the 2D K band simulation taken at a frequency of ! = 18GHz. On the bottom, a 3D simulation of the same problem.

investigate the physics of RF wave propagation in the electron cyclotron
frequency range in magnetized plasmas [39].

Finally, a code originally designed for reflectometry simulation,
such as those belonging to the REFMUL* family, can be applied to
other areas as is, or with minute modification. For instance, REFMUL
has been used to simulate a double vacuum window made of high-
density polyethylene [40]. It has also been used for atmospheric entry
applications, like the simulation of an electromagnetic environment for
the RAM-C II flight experiment, obtained through a CFD code coupled
to an electromagnetic propagation code [41]. A final example refers to
its use in the study of beam broadening in the edge turbulent plasma
of fusion machines for electron cyclotron resonance heating [42].
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Γp

Consider a partition ∂Ω = ΓA ∪ Γp, let ν be the outward unit normal,
• Periodic boundary conditions on Γp,
• Silver-Müller boundary conditions on ΓA:

ν × (E − B × ν) =

{
ν × sinc(x, t) on Γinc

A ,

0 on ΓA\Γinc
A ,

(2)

M A X- P L A N C K I N ST I T U T E FO R P L A S M A P H YS I C S , T U M E . M O R A L- SÁ N C H E Z , M . CA M P O S - P I N TO , Y. G Ü Ç LÜ, O . M A J T I M E - S P L I T T I N G S C H E M E S FO R T H E C O L D - P L A S M A M O D E L U S I N G F E E C 6



Weak form

• How to solve the system with the Silver-Müller boundary conditions (SM BC)?

∂tE − curlB = −ω̂pY in Ω,

∂tB + curlE = 0 in Ω,

∂tY + ω̂cY × b0 = ω̂pE − ν̂eY in Ω,

ν × (E − B × ν) = ν × sinc(x, t) on ΓA.
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Weak form

• How to solve the system with the Silver-Müller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

• Test against a test function and integrate over domain.
• Integration by parts → use boundary integral to enforce boundary conditions.
• Choose the right spaces for every field.
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Weak form

• How to solve the system with the Silver-Müller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

• Test against a test function and integrate over domain.
• Integration by parts → use boundary integral to enforce boundary conditions.
• Choose the right spaces for every field.

• We use the "strong-Faraday and weak-Ampère" formulation.

Find (E,B,Y ) ∈ C1(R+;V) such that for every (F ,C,G) ∈ V ,

⟨F , ∂tE⟩Ω − ⟨curlF ,B⟩Ω + ⟨ν × F ,ν × E⟩ΓA + ⟨F , ω̂pY ⟩Ω =⟨ν × F ,ν × sinc⟩Γinc
A
, (weak)

⟨C, ∂tB⟩Ω + ⟨C, curlE⟩Ω =0, (strong)
⟨G, ∂tY ⟩Ω + ⟨G × Y , ω̂cb0⟩Ω − ⟨G, ω̂pE⟩Ω + ⟨G, ν̂eY ⟩Ω =0, (strong)

where ⟨U,W ⟩Ω :=
∫
Ω U · Wdx.
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Weak form

• How to solve the system with the Silver-Müller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

• Test against a test function and integrate over domain.
• Integration by parts → use boundary integral to enforce boundary conditions.
• Choose the right spaces for every field.

• We use the "strong-Faraday and weak-Ampère" formulation.

Find (E,B,Y ) ∈ C1(R+;V) such that for every (F ,C,G) ∈ V ,

⟨F , ∂tE⟩Ω − ⟨curlF ,B⟩Ω + ⟨ν × F ,ν × E⟩ΓA + ⟨F , ω̂pY ⟩Ω =⟨ν × F ,ν × sinc⟩Γinc
A
, (weak)

⟨C, ∂tB⟩Ω + ⟨C, curlE⟩Ω =0, (strong)
⟨G, ∂tY ⟩Ω + ⟨G × Y , ω̂cb0⟩Ω − ⟨G, ω̂pE⟩Ω + ⟨G, ν̂eY ⟩Ω =0. (strong)

What is V? Choose the right spaces:

E ∈ Hcurl(Ω), B ∈ Hdiv(Ω), Y ∈ Hcurl(Ω), ν × E ∈ (L2(∂Ω))3
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Structure of the time-domain problem

V := {(E,B,Y ) ∈ Hcurl(Ω)× Hdiv(Ω)× Hcurl(Ω)|ν × E ∈ (L2(∂Ω))3}.

• Find (E,B,Y ) ∈ C1(R+;V) such that for every (F ,C,G) ∈ V ,

⟨F , ∂tE⟩Ω − ⟨curlF ,B⟩Ω + ⟨ν × F ,ν × E⟩ΓA + ⟨F , ω̂pY ⟩Ω =⟨ν × F ,ν × sinc⟩Γinc
A
,

⟨C, ∂tB⟩Ω + ⟨C, curlE⟩Ω =0,
⟨G, ∂tY ⟩Ω + ⟨G × Y , ω̂cb0⟩Ω − ⟨G, ω̂pE⟩Ω + ⟨G, ν̂eY ⟩Ω =0,

• Non-Hamiltonian terms spoil energy conservation:
boundary conditions and dissipative collisions

• Energy-balance

∂tH = −∥ν × E∥2
L2(ΓA)

− ⟨ν̂eY ,Y ⟩Ω + ⟨ν × E,ν × sinc⟩Γinc
A
,

where H = 1
2∥U∥2 = 1

2

(
∥E∥2

L2(Ω)
+ ∥B∥2

L2(Ω)
+ ∥Y∥2

L2(Ω)

)
• Long-time stability

∥(U − Uth)(t)∥ ≤ ∥(U − Uth)(0)∥ ∀t > 0,

where Uth is the time-harmonic solution.
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Structure-preserving discretization

• Space discretization: B-splines Finite Element Exterior Calculus (FEEC)

• divB = 0 guaranteed for all time
• easily applicable to curvilinear / multipatch domains
• high-order: choice of B-spline degree

• Time discretization: time-splitting methods (Poisson and Hamiltonian splitting)

• preservation properties: energy, total charge, etc.
• capture time-domain richer physics: energy-balance given by trade-off of boundary

conditions and electron-collision dissipation
• inherit long-time stability
• lower cost: solve subsystems instead of full system
• high-order: choice of subsystem integrator and composition.

• Result: high-order discretization that preserves physical behaviour.

• interest for long-time simulations
• compatible decompositions: incoming/scattered, time-harmonic/transient fields
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Space discretization

• B-splines −→ high order, CAD geometries
• FEEC (Finite Element Exterior Calculus) −→ structure preservation



Idea of B-splines FEEC framework

• Work with arrays (B-splines coefficients) and matrices (operators)

• Discrete differential operators are exact for fields in a certain basis (Finite
Element (FE) fields)

• The only approximation is the projection to FE fields (approximation error adjusted
via B-spline degree).

• Structure-preservation by construction, e.g.

divcurlE = 0 curlgradVE = 0

• Example of use:

to compute curlF , we compute the matrix-vector product CF,

where F are the B-spline coefficients and C is the curl matrix .
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FEEC framework

Fields F (x)

��

H1(Ω)

Π0��

grad // Hcurl(Ω)

Π1��

curl // Hdiv(Ω)

Π2��

div // L2(Ω)

Π3��
FE fields

∑
FiΛ

k
i (x)

��

V0
h

σ0
��

grad // V1
h

σ1
��

curl // V2
h

σ2
��

div // V3
h

σ3
��

Coefficients Fi C0
h

G // C1
h

C // C2
h

D // C3
h

(3)

• V k
h = spani

{
Λk

i
}

are the discrete spaces (tensor-product 1D B-splines degree p),

• Πk are the commuting projections and σk , the discrete degrees of freedom.

• G,C,D are the gradient, curl and divergence matrices.

• for Fh ∈ V1
h , the field curlFh has coefficients CF

→ discrete differential operators are exact.
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Semi-discrete form

Space discretization yields ODE in terms of coefficients (E,B,Y)(t) ∈ C1
h × C2

h × C1
h∂tE

∂tB
∂tY

 =

−M−1
1 A1 M−1

1 CT M2 −M−1
1 M1,ω̂p

−C 0 0
M−1

1 M1,ω̂p 0 −M−1
1

(
R1,ω̂c + M1,ν̂e

)
E

B
Y

+

M−1
1 Sinc(t)

0
0

 , (4)

where C is the curl matrix, CT is its transpose,

(M1)i,j := ⟨Λ1
i ,Λ

1
j ⟩Ω, (M2)i,j := ⟨Λ2

i ,Λ
2
j ⟩Ω,

(A1)i,j := ⟨ν × Λ1
i ,ν × Λ1

j ⟩ΓA , (M1,ω̂p)i,j := ⟨Λ1
i , ω̂pΛ

1
j ⟩Ω,

(M1,ν̂e)i,j := ⟨Λ1
i , ν̂eΛ

1
j ⟩Ω, (R1,ω̂c)i,j := ⟨Λ1

i × Λ1
j , ω̂cb0⟩Ω,

and the incoming source is given by

(Sinc(t))i = ⟨ν × Λ1
i ,ν × sinc(t)⟩Γinc

A
= ⟨ν × Λ1

i ,ν × Re{ŝince−it}⟩Γinc
A
.

M1 has a Kronecker structure → M−1
1 is cheap to compute.
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Structure of the semi-discrete form

Let H = H(Eh,Bh,Y h) be the discrete Hamiltonian, U = (E,B,Y).
• Hamiltonian systems have the form ∂tU = P∇UH with P antisymmetric.
• Here we have dissipation and boundary terms, i.e.

∂tU = P∇UH + N∇UH + f(t),

where the Poisson and “metric” matrices are

P :=

 0 M−1
1 CT −M−1

1 M1,ω̂pM−1
1

−CM−1
1 0 0

M−1
1 M1,ω̂pM

−1
1 0 −M−1

1 R1,ω̂c M
−1
1

 , N :=

−M−1
1 A1M−1

1 0 0
0 0 0
0 0 −M−1

1 M1,ν̂eM
−1
1


and f(t) := [M−1

1 Sinc(t),0,0]T .
• Energy-balance

∂tH = −(E · A1E + Y · M1,ν̂eY) + E · Sinc(t)

• Long-time stability

∥(Uh − Uth)(t)∥ ≤ ∥(Uh − Uth)(0)∥ ∀t > 0
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∂tE
∂tB
∂tY

 =

−M−1
1 A1 M−1

1 CT M2 −M−1
1 M1,ω̂p

−C 0 0
M−1

1 M1,ω̂p 0 −M−1
1

(
R1,ω̂c + M1,ν̂e

)
E

B
Y

+

M−1
1 Sinc(t)

0
0



Time discretization

∂tU = P∇UH + N∇UH + f(t)

• Use splitting methods for Hamiltonian systems
• Handle non-Hamiltonian terms



Poisson splitting

• For the Hamiltonian part, split Poisson matrix:

PMaxwell =

 0 M−1
1 CT 0

−CM−1
1 0 0

0 0 0

 , Pplasma =

 0 0 −M−1
1 M1,ω̂pM

−1
1

0 0 0
M−1

1 M1,ω̂pM
−1
1 0 −M−1

1 R1,ω̂c M
−1
1

 ,

• Keep boundary terms with "curlB" term (do not split integration by parts, enforce
physical boundary conditions).

(PMaxwell)


M1∂tE − CT M2B + A1E= Sinc(t)
∂tB + CE = 0
∂tY = 0

(Pplasma)


M1∂tE + M1,ω̂pY = 0
∂tB = 0
M1∂tY − M1,ω̂pE + R1,ω̂c Y + M1,ν̂eY= 0

• Long-time stability, (no CFL condition):

∥(Uh − Uth
h )(n∆t)∥ ≤ ∥(Uh − Uth

h )(0)∥ ∀n ≥ 0.
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Results

i. Heating setup experiment (high-frequency)
ii. Reflectometry experiment



Heating setup experiment

• Domain is [160,236]× [−6,6]× [20,44] (in cm).
• Incoming wave is a Gaussian beam with f0 = 140 GHz, beam width is 3.5 cm,

launching point is (236,0,32), polarized in ẑ.
• Parameters taken from ASDEX Upgrade shot #25485 4

• Heating setup: second harmonic resonance (ω̂c = 0.5) at x = 165 cm.

Launched beam (in vacuum)

4Data and setup provided by O. Maj.
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Heating experiment: electron plasma density
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Heating experiment: background magnetic field
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Electric field at t = 300T

• number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
• CFL = 0.21
• B-spline degree: [3,1,2]
• periodic BC along y (force constant direction)

|E(t = 300T)|

Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 300T

• number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
• CFL = 0.21
• B-spline degree: [3,1,2]
• periodic BC along y (force constant direction)

Ez(t = 300T)

Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 300T

• number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
• CFL = 0.21
• B-spline degree: [3,1,2]
• periodic BC along y (force constant direction)

Ey(t = 300T)

Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 300T

• number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
• CFL = 0.21
• B-spline degree: [3,1,2]
• periodic BC along y (force constant direction)

Ex(t = 300T)

Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Reflectometry experiment

• Incoming wave is a Gaussian beam with f0 = 59 GHz, launched with an angle of
π/4 rad = 45◦ wrt. normal, beam width is 3 cm and polarization is ẑ.

• Parameters taken from ASDEX Upgrade shot #30907

Launched beam (vacuum)
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Reflectometry experiment: background magnetic field
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Time-harmonic electric field

• number of cells: [280,1,400].
• solve in frequency-domain
• B-spline degree: [3,1,3]
• periodic BC along y (force constant direction)

|ℜ{Ê}|
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Time-harmonic electric field

• number of cells: [280,1,400].
• solve in frequency-domain
• B-spline degree: [3,1,3]
• periodic BC along y (force constant direction)

ℜ{Ê}z
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Time-harmonic electric field

• number of cells: [280,1,400].
• solve in frequency-domain
• B-spline degree: [3,1,3]
• periodic BC along y (force constant direction)

ℜ{Ê}y
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Time-harmonic electric field

• number of cells: [280,1,400].
• solve in frequency-domain
• B-spline degree: [3,1,3]
• periodic BC along y (force constant direction)

ℜ{Ê}x
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How to use Psydac

• high-order structure-preserving space discretization (B-splines FEEC)

• set up the problem symbolically, internally work with arrays

• run in parallel using MPI, including post-processing



How to run a simulation with Psydac5

MODEL: equation, boundary conditions, physical parameters
(callables, interpolated data, math expressions)

SymPDE: symbolic structures (domain, mapping, function space, equation)

PSYDAC: arrays of B-spline coefficients, stencil matrices, matrix-free operators

PSYDAC solvers:
standard Krylov methods

and preconditioners

PETSc solvers:
interface with Hypre,

MUMPS, Trilinos, SPAI, ...

Post-processing: save fields in parallel using HDF5 and plot to VTK.

discretize

5https://github.com/pyccel/psydac
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Set up Poisson equation using Sympde

Let Ω = [0,5]× [−1,3.7]× [0,2π],

∆u = f in Ω,

u= 0 on x = 0, x = 5,

and periodic along y, z.

Find u ∈ H1
0(Ω) such that

⟨∇u,∇w⟩L2(Ω) = ⟨f ,w⟩L2(Ω)

for every w ∈ H1
0(Ω).

f can be a callable (interpolation)
or a symbolic expression.

1 # domain
2 D = Cube(’D’, bounds1 =(0, 5),
3 bounds2=(-1, 3.7),
4 bounds3 =(0, 2*np.pi))
5

6 # function space
7 V = ScalarFunctionSpace(’V’, D, kind=’h1’)
8 u = element_of(V, name=’u’) # trial function
9 w = element_of(V, name=’w’) # test function

10

11 # LHS
12 a = BilinearForm ((u,v),
13 integral(D, dot(grad(v), grad(u))))
14

15 # RHS
16 l = LinearForm(v , integral(D, f * v))
17

18 # homogeneous Dirichlet boundary conditions
19 bdry0 = Union(D.get_boundary(axis=0, ext=-1)

,
20 D.get_boundary(axis=0, ext =1))
21 bc = EssentialBC(u, 0, bdry0)
22

23 # declare equation
24 equation = find(u, forall=w,
25 lhs=a(u,w), rhs=l(w), bc=bc)
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Discretize and solve using Psydac

Discretization ingredients:
• Number of cells
• B-spline degree
• Backend
• communicator

Solver configuration
• Type (CG)
• Tolerance
• maximum number of

iterations

The result are the B-spline
coefficients of the solution.

1 # discretize domain
2 Dh = discretize(D, ncells=(30,20,5),
3 periodic =(False ,True ,True),
4 comm=MPI.COMM_WORLD)
5

6 # discretize function space
7 Vh = discretize(V, Dh, degree=(3,1,2))
8

9 # discretize equation
10 be=PSYDAC_BACKENDS[’pyccel -gcc’]
11

12 equation_h = discretize(equation , Dh,
13 [Vh , Vh], backend=be)
14

15 # solve discrete equation
16 equation_h.set_solver(’cg’, tol=1e-9,
17 maxiter =100)
18 u_h = equation_h.solve() # coefficients array
19

20 # retrieve a callable field
21 u_callable = FemField(Vh , coeffs=u_h)
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Conclusions

• B-splines FEEC provides a high order structure-preserving space
discretization.

• Our time discretization is high order, captures the time-domain richer physics
and is efficient.

• Psydac provides a framework for structure-preserving simulations.
• Using SymPDE we can set up a problem with complicated boundary conditions

and general curvilinear / multipatch geometries.

• Psydac discretizes the symbolic structures, provides different solvers and powerful
post-processing tools.

For more details on the schemes, see E. Moral Sánchez, M. Campos Pinto, Y. Güçlü and O. Maj ,“Time-splitting
methods for the cold-plasma model using Finite Element Exterior Calculus”, arXiv:2501.16991 [math.NA] (2024).

M A X- P L A N C K I N ST I T U T E F O R P L A S M A P H YS I C S , T U M E . M O R A L- SÁ N C H E Z , M . CA M P O S - P I N TO , Y. G Ü Ç LÜ, O . M A J T I M E - S P L I T T I N G S C H E M E S FO R T H E C O L D - P L A S M A M O D E L U S I N G F E E C 3 0


	The cold-plasma model
	Space discretization
	Time discretization
	Results
	How to use Psydac

