MAX-PLANCK-INSTITUT
FUR PLASMAPHYSIK

A structure-preserving spline Finite-Element
solver for the cold-plasma model

Elena Moral Sanchez2

Martin Campos-Pinto!-?
Yaman Gugld’
Omar Maj'?

"Division of Numerical Methods for Plasma Physics, Max-Planck Institute for Plasma Physics.
2Department of Mathematics, Technical University of Munich

2 . fnded by he
{C)) EUROfusion e e g Gt o 0 Gt Voo
=2 Noier

X-PLANCK INSTITUTE FOR PLASMA PHYSICS, TUM | E.MORAL-SANCHEZ, M.CAMPOS-PIN Y.GUGLU, 0.MAJ | TIME-SPLITTING SCHEMES FOR THE COLD-PLASMA MODEL USING FEE 1



Motivation

+ High-frequency waves in plasma.
+ Applications in plasma-wave heating' and reflectometry °l
diagnostics?. J

Problem setup:

 Strongly magnetized plasma (time-independent magnetic field). -
» Time-independent electron plasma density.
» Time-harmonic electromagnetic wave launched into the plasma. |

We run simulations using experimental data:
* SymPDE to set up model
* PSYDAC to simulate the time-evolution of the electromagnetic field

'S. Heuraux et al.,“Simulation as a tool to improve wave heating in fusion plasmas”, Journal of Plasma Physics 81,2015.

2F. da Silva et al., “An overview of the evolution of the modeling of reflectometry diagnostics in fusion plasmas using
finite-difference time-domain codes”, Fusion Engineering and Design 202, 2024.

3Image from F. da Silva et al. 2019 JINST 14 C08003.

*https://github.com/pyccel/sympde

5https://github.com/pyccel/psydac



State of the art and challenge
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Often solved in Frequency-Domain or Time-Domain (richer physics) but
* Finite-Difference on Cartesian grids,
» low order and long-time stability is an issue®.

— Our discretization is high-order and structure-preserving, based on B-spline FEEC

3F. da Silva, M. Campos-Pinto, B. Després, S. Heuraux, “Stable explicit coupling of the Yee scheme with a linear
current model in fluctuating magnetized plasmas”, Journal of Computational Physics 295, 2015.



* in time-domain
* Silver-Miiller (aka impedance or Robin) boundary conditions



Time-domain problem

In normalized units (wrt. incoming wave frequency wy), the time evolution of the
electromagnetic field (E, B) and the current density J is given by

OtE — curlB = —@p Y,
0tB + curlE =0, (1)
atY +(4/‘-\}CY X bo = (:k\)pE - ljey7

where Y = wo@p/4md, the normalized electron plasma and cyclotron frequencies are

Op(X) = \/47rezne(x)/(mew§), @e(x) = e|By(x)|/(meCwy),

* ne(x) is the background electron plasma density,

By (x) is the background magnetic field with by = By /|By|,

+ e is the elementary charge, m is the electron mass

De > 0 is the normalized electron-collision frequency.



Boundary conditions

* Instead of simulating the antenna, we prescribe a field on the boundary.
* The waves can leave the domain freely

Ao i
I I
: RO

Consider a partition 90Q = ', U p, let v be the outward unit normal,
* Periodic boundary conditions on ',
+ Silver-Miiller boundary conditions on T 4:

v x §(x,t) onTic

0 on [\,

I/X(E—BXI/):{ (2)
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Weak form

* How to solve the system with the Silver-Muller boundary conditions (SM BC)?

OE — curlB = —@pY in Q,
OB + curlE =0 in Q,
Y + &Y x by = OpE — D6 Y in Q,

vx (E—-Bxv)=vxs™(x,t) onrla.



Weak form

» How to solve the system with the Silver-Muller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

 Test against a test function and integrate over domain.
* Integration by parts — use boundary integral to enforce boundary conditions.
* Choose the right spaces for every field.



Weak form

» How to solve the system with the Silver-Muller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

 Test against a test function and integrate over domain.
* Integration by parts — use boundary integral to enforce boundary conditions.
* Choose the right spaces for every field.

* We use the "strong-Faraday and weak-Ampére" formulation.

Find (E,B,Y) € C'(Ry; V) such that for every (F,C,G) € V,

F,E)q — (curlF,B)g + (v x F,u x E)r, + (F,&pY)g =(v x F, v x 8" ine,  (weak)
A P My

<C, atB>Q+ <C, CurlE>Q

(G,0iY)a + (G x Y,&cbo)a — (G, GpE)a + (G, 7Y )a

0,
0

9

where (U, W)q := [, U- Wdx.



Weak form

» How to solve the system with the Silver-Muller boundary conditions (SM BC)?
weak form = system of equations that solves the system with SM BC.

 Test against a test function and integrate over domain.
* Integration by parts — use boundary integral to enforce boundary conditions.
* Choose the right spaces for every field.

* We use the "strong-Faraday and weak-Ampére" formulation.

Find (E,B,Y) € C'(R.; V) such that for every (F,C,G) € V,

(F,0iE)q — (curlF,B)g + (v x F, v x E)r, + (F,&pY ) =(v x F,v x Sinc>ri‘nc, (weak)
(C,0B)q + =0,
(G,0Y)a+ (G xY,bcby)g — (G,0pE)q + (G, e Y)q =0.

What is V? Choose the right spaces:

. BeHWQ), YeH™(Q), vxEe(L30Q)°



Structure of the time-domain problem
V:={(E,B,Y) € H"(Q) x HE(Q) x H*"(Q)|v x E € (L?(0Q))%}.

- Find (E,B,Y) € C'(R.; V) such that for every (F,C,G) € V,
(F.0E)q — (cwlF, B)g + (v x F.v x E)r, + (F.&pY)a =(1 x F.v x $") e,

(C,0:B)q + (C, curlE)q =0,

(G,0tY)a+ (G x Y,Ocbg)q — (G, 0pE)q + =0,

* Non-Hamiltonian terms spoil energy conservation:
boundary conditions and
* Energy-balance
5 .
8;?—[:—“1/><EHL2(FA)— +<I/XE,V><Slnc>rli4nC7

where H = }|[U||* = 3 (HEHEZ(Q) + 1Bl (q) + HYHEZ(Q))

* Long-time stability
I(U-UMB) < [I(U-U)O0)]  vt>0,

where U is the time-harmonic solution.



Structure-preserving discretization

» Space discretization: B-splines Finite Element Exterior Calculus (FEEC)

 divB = 0 guaranteed for all time
* easily applicable to curvilinear / multipatch domains

* high-order: choice of B-spline degree
» Time discretization: time-splitting methods (Poisson and Hamiltonian splitting)

* preservation properties: energy, total charge, etc.

 capture time-domain richer physics: energy-balance given by trade-off of boundary
conditions and electron-collision dissipation

* inherit long-time stability
* lower cost: solve subsystems instead of full system

¢ high-order: choice of subsystem integrator and composition.

* Result: high-order discretization that preserves physical behaviour.

* interest for long-time simulations

* compatible decompositions: incoming/scattered, time-harmonic/transient fields



B-splines of different degree
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Space discretization

» B-splines — high order, CAD geometries
* FEEC (Finite Element Exterior Calculus) — structure preservation




Idea of B-splines FEEC framework

Work with arrays (B-splines coefficients) and matrices (operators)

Discrete differential operators are exact for fields in a certain basis (Finite
Element (FE) fields)

The only approximation is the projection to FE fields (approximation error adjusted
via B-spline degree).

Structure-preservation by construction, e.g.

diveurlE =0 curlgradVeg =0

Example of use:
to compute curlF, we compute the matrix-vector product CF,

where F are the B-spline coefficients and C is the curl matrix .



FEEC framework

H1 (Q)ﬂchrl(Q)ngiv(Q)gL2(Q)

¢ e

V/? grad V/J curl Vﬁ div Vf? (3)
\L \L &0 \L o i o2 ‘LUS
chp——Ch———C—>—C}

V,’j = span; {/\f‘} are the discrete spaces (tensor-product 1D B-splines degree p),
M, are the commuting projections and o, the discrete degrees of freedom.
G, C, D are the gradient, curl and divergence matrices.

for F, € V}, the field curlF, has coefficients CF
— discrete differential operators are exact.



Semi-discrete form

Space discretization yields ODE in terms of coefficients (E, B, Y)(t) € C} x C2 x C}

O:E —M1*1A1 M?1CTM2 —M?1 M17@p E M1—1sir1C(t)
oB| = —C 0 0 B| + 0 (4
8tY M1_1M17(:"P 0 _M1_1 (R17£:)c + ) Y 0

where C is the curl matrix, CT is its transpose,

(M1)ij == (N, Ao, (Mo)ij == (A7, Af)q,
(Aij = (v x N,v x N)r,, (M1.g,)ij = (N, @ e,
(M1 0 = (N, Del\] o, (R1.)ij = (N x N, &cbo)a,

and the incoming source is given by
(S™(t))i = (v x N, v x St ppe = (v x A v x Re{émcef“}hﬂc.

My has a Kronecker structure — Mf is cheap to compute.



Structure of the semi-discrete form
Let H = H(Ep, By, Y1) be the discrete Hamiltonian, U = (E, B, Y).
* Hamiltonian systems have the form 0;U = PVyH with P antisymmetric.
* Here we have and boundary terms, i.e.
0tU = PVyH + NVyH +1(t),

where the Poisson and “metric” matrices are

0 MTCT My My g, My ~M7'AM;T 0 0
P.= —cMm;! 0 0 ,N:= 0 0 0
My "My o, M 0 —M; 'Ry o, M7 0 0o M’ M
and f(t) := [M;'S™(t),0,0]".
* Energy-balance
oH = —(E-AE + )+ E - S™(1)

* Long-time stability

I(Us = UMDl < [I(Up = U™)O)]]  Vt>0



atE —M;1A1 M;1CTM2 _M171M1,.’Dp E M?1Sinc(t)
oB| = -C 0 0 B| + 0
oY |\/|171 M1,@p 0 —M;1 (RL@C + MLf/e) Y 0

9 = PVyH + NVyH + ()

* Use splitting methods for Hamiltonian systems
* Handle non-Hamiltonian terms



Poisson splitting

» For the Hamiltonian part, split Poisson matrix:

0o wM7'cT o 0 0 —M; My gM;!
PMaxwell = _CM;1 0 0 9 Pplasn1a 0 0 0 9
0 0 0 My "My g,M7T 0 MRy o My

» Keep boundary terms with "curlB" term (do not split integration by parts, enforce
physical boundary conditions).

M;0:E — CTM2B+A1E: Sinc(t) M1 0:E + M‘]’QpY 0
(PMaxwell) 8tB + CE =0 (Pplasma) 8TB =0
oY ~0 M1 — My 5 E + Ry 5. Y + 0

» Long-time stability, (no CFL condition):

I(Un = UR) (A < [[(Un — U)(0)]  vn=>o0.



i. Heating setup experiment (high-frequency)
ii. Reflectometry experiment



Heating setup experiment

» Domain is [160,236] x [—6, 6] x [20,44] (in cm).

* Incoming wave is a Gaussian beam with f, = 140 GHz, beam width is 3.5 cm,
launching point is (236, 0, 32), polarized in Z.

« Parameters taken from ASDEX Upgrade shot #25485 *

* Heating setup: second harmonic resonance (& = 0.5) at x = 165 cm.

Launched beam (in vacuum)

-1.00400 1.06+00

- .

“Data and setup provided by O. Maj.



Heating experiment: electron plasma density
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Heating experiment: background magnetic field

B, radial [T] By toroidal [T]

z[m]

Rl
Ve
7 . )
& 4 e ~ s
Pz Ve
Pl //
\K
—~7 '{l"jl P
' 2
T
~ / /\%22 /2
~ P 2
k‘\\/ / / >0\]
Z 22 - s 0y m)
237
* Bo modulus e

1.8e+04 2.0e+4 2.4e+4 2.6e+04

LANCK INSTITUTE FOR PLASMA PH ~\~Awmt; M.CAN

v_\ J 1 TIME-SPLITTING SCHEMES FOR

DDEL

20



Electric field at t = 3007

* number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
CFL=0.21

B-spline degree: [3,1,2]

periodic BC along y (force constant direction)

[E(t = 300T)]

1200
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Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 3007

number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
CFL =0.21

B-spline degree: [3,1,2]

periodic BC along y (force constant direction)

E,(t = 300T)

X
Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 3007

* number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
CFL =0.21

B-spline degree: [3,1,2]

periodic BC along y (force constant direction)

E,(t =300T)

X

Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Electric field at t = 3007

number of cells: [3547,1,560] (10 cells per wavelength along x, 5 along z).
CFL =0.21

B-spline degree: [3,1,2]

periodic BC along y (force constant direction)

Ey(t = 300T)

X
Ran in TOKb cluster, 32 cores, max RAM=1.2Tb (matrix assembly)
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Reflectometry experiment
* Incoming wave is a Gaussian beam with f, = 59 GHz, launched with an angle of
7/4 rad = 45° wrt. normal, beam width is 3 cm and polarization is 2.

» Parameters taken from ASDEX Upgrade shot #30907

Launched beam (vacuum)

R{EP}

[ 1.0e+00
l -1.0e+00
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z[m]

Reflectometry experiment
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Time-harmonic electric field

* number of cells: [280, 1,400].

* solve in frequency-domain

* B-spline degree: [3,1, 3]

. Aperiodic BC along y (force constant direction)
R{E}|

1224

1088

2.16-01
N o
L 015 3
:': T
((v] - :
L 005 =
< LLI 0265
2.0e-47

“Right figure:; WKB beam.simulation provided by Q. Maj



Time-harmonic electric field

number of cells: [280, 1,400].
solve in frequency-domain
B-spline degree: [3,1, 3]
* periodic BC along y (force constant direction)
R{E},
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Time-harmonic electric field

number of cells: [280, 1,400].
solve in frequency-domain
B-spline degree: [3,1, 3]
* periodic BC along y (force constant direction)
R{E}y
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Time-harmonic electric field

number of cells: [280, 1,400].
solve in frequency-domain
B-spline degree: [3,1, 3]
* periodic BC along y (force constant direction)
R{E }x
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+ high-order structure-preserving space discretization (B-splines FEEC)
+ set up the problem symbolically, internally work with arrays

* run in parallel using MPI, including post-processing



How to run a simulation with Psydac®

MODEL: equation, boundary conditions, physical parameters
(callables, interpolated data, math expressions)

‘ SymPDE: symbolic structures (domai

n, mapping, function space, equation) ’

discretize

{PSYDAC: arrays of B-spline coefficients, stencil matrices, matrix-free operators}

/

PSYDAC solvers:
standard Krylov methods
and preconditioners

o~

~.

PETSc solvers:
interface with Hypre,
MUMPS, Trilinos, SPAI, ...

/

{Post-processing: save fields in parallel using HDF5 and plot to VTK}

*https://github.com/pyccel/psydac



Set up Poisson equation using Sympde

# domain

|
LetQ::[O,S]x L_1,3;n X[O,ZWL 2D = Cube(’D’, boundsl1=(0, 5),
3 bounds2=(-1, 3.7),
Au—=f inS?, 2 bounds3=(0, 2*np.pi))
, 6 # function space
7 V. = ScalarFunctionSpace(’V’, D, kind=’h1l’)
and periodic a|ong y,Z. s u = element_of (V, name=’u’) # trial function
9w = element_of (V, name=’w’) # test function
10
11 # LHS
i2 a = BilinearForm((u,v),

[N
+H+
N

RHS
= LinearForm(v , integral(D, f * v))

Find u € H{ () such that

N
=

= {f,W)2(q)

e

# homogeneous Dirichlet boundary conditions
bdry0 = Union(D.get_boundary(axis=0, ext=-1)

©

for every w € H{(Q).

20 D.get_boundary (axis=0, ext=1))
21 bc = EssentialBC(u, 0, bdry0)

f can be a callable (interpolation) =2

or a symbolic expression. 25 # declare equation
24 equation = find(u, forall=w,

25 lhs= , rhs=1(w), bc=bc)

N



Discretize and solve using Psydac

Discretization ingredients: gl cllscsuiies douadld
2 Dh = discretize (D, ncells=(30,20,5),
* Number of cells 3 periodic=(False,True, True),
« B-spline degree 4 comm=MPI.COMM_WORLD)
5
* Backend 6 # discretize function space
« communicator 7 Vh = discretize(V, Dh, degree=(3,1,2))

8
9 # discretize equation
10 be=PSYDAC_BACKENDS [’pyccel -gcc’]

Solver configuration "

12 equation_h = discretize (equation, Dh,
* Type (CG) 13 [Vh, Vh], backend=be)
« Tolerance "
15 # solve discrete equation
* maximum number of 16 equation_h.set_solver(’cg’, tol=1le-9,
iterations 17 maxiter=100)

18 u_h = equation_h.solve() # coefficients array
19
20 # retrieve a callable field

The result are the B—Spline 21 u_callable = FemField(Vh, coeffs=u_h)
coefficients of the solution.



Conclusions

» B-splines FEEC provides a high order structure-preserving space
discretization.

» Our time discretization is high order, captures the time-domain richer physics
and is efficient.

» Psydac provides a framework for structure-preserving simulations.

* Using SymPDE we can set up a problem with complicated boundary conditions
and general curvilinear / multipatch geometries.

* Psydac discretizes the symbolic structures, provides different solvers and powerful
post-processing tools.

For more details on the schemes, see E. Moral Sanchez, M. Campos Pinto, Y. Gi¢li and O. Maj ,“Time-splitting
methods for the cold-plasma model using Finite Element Exterior Calculus”, arXiv:2501.16991 [math.NA] (2024).
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