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Motivation and Main Results

• Motivation: fast waves in the lower hybrid frequency range (helicon) can provide
off-axis current drive needed for non-inductive, steady-state scenarios

• Goal: experimentally measure the electron temperature and current profile
response to helicon injection in order to assess absorption and current drive

– Necessary to validate models before using to design future scenarios

• Main results:
– Core electron heating directly observed in both L and H mode plasmas
– Strong and reproducible experimental evidence of helicon current drive in DIII-D
– Experimental estimates of absorption and current drive are consistent with GENRAY
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Helicon Wave Can Provide Off-Axis Current Drive

• Helicon: fast wave in the lower hybrid range of
frequencies (fci ≪ f ≪ fce)

– DIII-D traveling wave antenna: 476 MHz, n∥ = 3

• Absorption via Landau damping, scales with βe

– Current drive efficiency scales with Te/ne and ω/k∥vth,e

• Off-axis absorption can drive non-inductive current
necessary to help sustain advanced scenarios1

• Physics goal: demonstrate helicon heating and current
drive in DIII-D plasmas and validate against modeling

Helicon Trajectory
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1R. Prater et al. Nucl. Fusion 54, 083024 (2014)
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MW-level DIII-D Helicon System
Has Been Used for Physics Experiments

• 30 module comb-line traveling wave antenna, 1.5 m in total length
– Robust load resilience to ELMs consistently observed

• Designed to inject power from either end to drive current in either toroidal direction
• 1.2 MW maximum klystron power, reliably operated around 700 − 800 kW

– Routinely coupled 300 − 400 kW to plasma for up to 2 s

• No influx of impurities was measured during helicon injection
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Definitive Observation of Electron Heating Due to Helicon

• Helicon power modulated at fixed frequency to isolate coherent electron heating
• Square coherence measures synchronization of Te with helicon power over time

– Clear peaks at fmod = 23 Hz, 3fmod = 69 Hz, and 5fmod = 115 Hz on core ECE
Square coherence far exceeds 95% statistical significance level

⇒
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Measured δTe Profiles Show Core Heating

• GENRAY predicts core
deposition with ≈ 40% first
pass absorption in L mode

– 210 kW power measured
leaving the antenna

• Square coherence and δTe

peak in core, agreeing with
ray tracing predictions

• Preliminary estimate of
90 ± 20 kW of heating

– Need transport modeling
to improve accuracy

Helicon Trajectory
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Time-Dependent Integrated Modeling With TRANSP

• TRANSP loops over the GENRAY ray tracing code and MMM2 turbulent transport
model in order to predict the helicon deposition and δTe response over time

• Comparing predicted δTe to ECE measurements aids experimental interpretation

Ray Tracing Code
(GENRAY, TORAY)

Transport Model
(TGLF, MMM, etc)

Equilibrium + profiles

Power deposition

+ current driveMagnetic equilibrium
1D plasma profiles

Heating/CD parameters

Fluxes + sourcesTe prediction

TRANSP
time-dependent inputs
time evolves Te profile

2T. Rafiq et al. Plasma 6, 435 (2023)
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δTe Measurements Consistent With
Time-Dependent TRANSP Simulations

• Coherence is slightly higher in TRANSP, with very similar peaked profile
• δTe response predicted by TRANSP reproduces broad measured deposition

– Explains difference between GENRAY vs ECE measurements via transport effects
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Observed Power Absorption Scales
With Predicted First Pass Absorption

• Core βe scanned across shots with varying ECH to scan predicted absorption
• Observed electron heating tracks first pass absorption predicted by GENRAY

– Measurements shown without transport corrections

• Clear heating also observed in H mode, absorption more difficult to quantify
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Helicon Injection Changes MSE Evolution

• Only one side of antenna available, unable to compare co- vs cntr-current drive
– Use ECH comparison shots to separate heating vs current drive effects instead

Inject helicon power continuously to drive co-Ip current, without any modulation

• MSE drops faster in shots with helicon than with comparable EC heating
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Te and q Profiles Indicate
Helicon Heating and Current Drive

• 370 kW coupled helicon power increases Te by ∼ 1 keV relative to the reference
– Similar Te profile to 250 kW of ECH deposited at ρ = 0.1

Somewhat larger than the ≈ 47% FPA predicted by GENRAY (175 kW)

• MSE-constrained reconstruction shows q profile flattening due to helicon current
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Sawteeth Start Earlier in Helicon Shots

• Sawteeth onset when q = 1, providing
independent measure of current evolution

• Helicon shots begin sawtoothing long before
shots with comparable amount of ECH

• Interpretation: co-Ip helicon current drives q
down faster, triggering sawteeth earlier

– Consistent with MSE and EFIT reconstruction
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Helicon Current Determined by Comparing
Non-Inductive Current With Reference Shots

• Changes in J∥ profiles are insufficient to
quantify helicon current drive

–
∫
∆J∥ dA = 0 since Ip is unchanged

• Determine change in non-inductive current by
subtracting off Ohmic current and “known”
non-inductive current sources3

• Calculate ∆JNI between shots with and without
helicon to mitigate systematic uncertainties

JH = ∆J∥ −∆JOhm −∆(JBS + JNB + JEC)

• Average over repeat shots with helicon vs no helicon to reduce uncertainty

3C.B. Forest et al. Phys. Rev. Lett. 73, 2444 (1994)
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Subtract Ohmic and Other Current Sources
To Get Remaining Non-Inductive Current

• E∥ calculated from MSE-constrained equilibrium reconstruction, neoclassical

conductivity from kinetic profile data: JOhm = σE∥ ∝ T 3/2
e

Zeff

∂ψ
∂t

• Other non-inductive current sources calculated by standard models in TRANSP

• Systematic errors lead to unexplained current near ρ ≈ 0.3 in reference shots
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Peaked Helicon Current Profile Within ρ < 0.2

• Helicon current profile consistent with measured heating profile in similar L modes
– Helicon current density far exceeds the spread among reference and ECH shots

• Preliminary estimate of ≈ 20 kA integrated current, at least 10 kA uncertainty
– Note: shaded regions show average across shots – uncertainties not yet propagated
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Measured Helicon Current Drive in
Reasonable Agreement With Modeling

• GENRAY predicted current density profile is more peaked than experiment
– Sensitive to details of ray trajectory due to rapidly decreasing volume near axis

• Integrated current profile in fair agreement, finding similar amount of current
enclosed in ρ < 0.2 – oscillations likely an artifact of analysis

– GENRAY prediction for first pass absorption: 150 kA/MW of absorbed power
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Main Results and Ongoing Analysis

Main Results
• Core electron heating observed in both L and H mode DIII-D plasmas

– Time-dependent integrated modeling in qualitative agreement with measurements

• Strong evidence for first observation of helicon current drive on any device
– Observed changes in L mode current profile can not be explained by heating alone

Ongoing Analysis

• Calculate H mode power absorption from modulated Te response

• Refine L mode current drive analysis and quantify experimental efficiency

Work supported by US DOE under DE-FC02-04ER54698. ASIPP and KFE contributed to
the manufacturing and procurement of the helicon hardware.
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Mid-Radius Current Drive Is Needed for Reactor Scenarios

• Steady state scenarios require efficient,
non-inductive off-axis current drive4

• DIII-D has been studying methods for off-axis
radio frequency current drive

– Top launch ECCD (since 2019)
– Helicon current drive (2021)
– HFS lower hybrid current drive (2024)

• Whereas ECCD is localized near ω ≈ nωce,
helicon and lower hybrid current drive occur
due to Landau damping, when ω/k∥ ≈ v∥,e

– Off-axis absorption for sufficiently high βe

4S.C. Jardin et al. Fusion Eng. Des. 38, 27 (1997)
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Investigating Helicon Absorption With Power Modulation

Time

Input power T
e
 response

• Direct heating: modulated helicon power →
modulated δTe response at same frequency,
lagging by 90◦ (ideally)

– Transport effects distort this picture
when modulation is not sufficiently fast

However, faster modulation leads to
smaller amplitude fluctuations

• Use cross-spectral analysis techniques with
Fourier transforms to average over many cycles

• Compare to same analysis with modulated
ECH, assumed to be well-understood
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Electron Temperature Responds to Modulation Frequency

• δTe amplitude
increases with longer
helicon pulse time

• Frequency scan
rules out coincidental
δTe oscillations
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Clear Electron Heating Also Observed in ELMy H mode

• GENRAY predicts over 90% first pass absorption in these H mode plasmas
– Absorption still predicted near axis – higher density plasmas push absorption off axis

• Robust load resilience – no substantial rise in reflected power during ELMs
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Ensemble Averaging Is Necessary to Quantify Coherence

• Let P(t) be the modulated input power (helicon or ECH) and Te(t) be the output

– Then P̂(f ) = F [P(t)] and T̂e(f ) = F [Te(t)] are their Fourier images

• Square coherence: γ2 =
|⟨T̂∗

e P̂⟩|2

⟨P̂∗P̂⟩⟨T̂∗
e T̂e⟩

≈ 1 only when ϕP(t) ≈ ϕTe(t)

– ⟨. . . ⟩ denotes ensemble averaging, by chopping the time series into ns segments

– Significance test: γ2 > 1 − α
1

ns−1 rejects the null hypothesis with uncertainty α

• Dividing into more segments improves statistics, but reduces frequency resolution
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Cross Phase Characterizes Heating vs Transport Response

• Measured Te response includes both heating
and transport effects

• Out of phase component results from heating

Im[δTe(f )] =
Im[⟨P̂∗T̂e⟩]

⟨P̂∗P̂⟩ P̂

• In phase component Re[δTe(f )] occurs due to
transport or direct diagnostic pickup

• Cross phase tanϕ(f ) = Im[δTe]
Re[δTe]

quantifies this
relationship (ϕ → −90◦ for zero transport)
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Two Quantities for Estimating δTe Response

• Defining the transfer function Ĥ via T̂e(f ) = Ĥ(f )P̂(f ) ⇒ Ĥ = ⟨P̂∗T̂e⟩/⟨P̂∗P̂⟩,

1. Coherent output spectrum: δT 2
e (f ) = |Ĥ|2⟨P̂∗P̂⟩ = |⟨P̂∗T̂e⟩|2

⟨P̂∗P̂⟩

– Weighting by coherence is built in (equivalently, |Ĥ|2⟨P̂∗P̂⟩ = γ2⟨T̂∗
e T̂e⟩)

– Complementary quantity: incoherent spectrum: (1 − γ2)⟨T̂∗
e T̂e⟩

– Drawback: no information on phase between P̂ and T̂e

2. Out of phase response: δTe(f ) = Im[Ĥ]|P̂| = Im[⟨P̂∗T̂e⟩]
⟨P̂∗P̂⟩ P̂

– Cross phase: tanϕ(f ) = Im[δTe]
Re[δTe]

characterizes heating vs transport response
– Does not include coherence directly, very noisy away from modulation frequency
– Drawback: overstates ∆f resolution due to interpolating Ĥ(f ) onto grid of P̂(f )

• Relative error formulas exist for both quantities5 (errorbars in plots)

5J.S. Bendat et al. Journal of Sound and Vibration 59, 405 (1978)
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Electron Transport Effects Complicate
Extracting Absorbed Power From δTe Measurements

• Electron energy conservation relates source profile Ŝ(f , ρ) to T̂e(f , ρ) via transport

−D∇2T̂e(f , ρ) + V∇T̂e(f , ρ) +

(
1
τ
+ i

3
2
ω

)
T̂e(f , ρ) =

Ŝ(f , ρ)
ne

• Diffusion and convection can smear out the fluctuations and alter the cross phase

• Rigorous approach: fit multiple
harmonics of T̂e data to determine
values of transport coefficients6

– Present helicon data does not
have high enough signal to
noise to fit multiple harmonics

6C.C. Petty et al. 23rd RFPPC, Hefei, China (2019)
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Zero Transport Approximation Yields an
Oversimplified Estimation of Power Deposition

• If modulation is much faster than transport, can assume direct heating response

• Then summing over all frequencies in a square wave of height Smax gives the
total absorption as a function of δTe measured only at the modulation frequency f0

Pabs =

∫
Smax(ρ)dV ≈ 3π

4
ω0

∫
ne(ρ)Im[T̂e(f0, ρ)]dV

• ECH modulation experiments indicate f0 = 23 Hz
is not within this zero transport regime7

• Compromise: adjust this approximation via
calibrated ECH measurements and modeling

7C.C. Petty et al. 61st APS DPP, Fort Lauderdale, FL (2019)
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ECH Experiments Used to Adjust
for Transport in Helicon Experiments

• Significant shortfall exists when
calculating Pabs from δTe data without
transport for ECH modulation shot

• Leap of faith: assume the ECH transport
correction is the same for helicon

– Note: ECH deposition is much more
narrow than helicon, localized at ρ ≈ 0.2

– Crude approximation, not a precise
accounting of transport effects

PHK
abs ≈ PHK

meas(ECE)
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Vacuum Transmission Losses Improve With Conditioning

• Antenna designed for “reverse” BT direction for advanced scenario experiments
– Antenna conditioning is sensitive to direction of magnetic field

Majority of time available for conditioning was in “standard” BT direction

200300 200400 200500 200600 200700 200800 200900

Shot Number

0%

20%

40%

60%

80%

100%

P
o
w

e
r 

R
e
a
c
h
in

g
 A

n
te

n
n
a

Standard 

Field Direction

Reverse

Field Direction

J.B. Lestz 25th RFPPC Meeting May 2025 B11 / 17



Vacuum Transmission Losses Depend
on Which Side of Antenna is Fed Power

• Magnetic field and plasma current directions unchanged in two shots below

• Vacuum transmission losses were much higher when injecting in cntr-Ip direction
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Vacuum Transmission Losses Depend on Field Direction

• Magnetic field direction flipped between two shots below

• Vacuum transmission losses were much higher in the reverse BT direction
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GENRAY Predicts Core Absorption in L Mode Plasma

• GENRAY predicts core
deposition with ≈ 47% first
pass absorption in L mode

– 370 kW power measured
leaving the antenna

• GENRAY predicts ≈ 26 kA
helicon current drive

• Unambiguous core heating
measured by comparing Te in
shots with and without helicon

Helicon Trajectory
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MSE-Constrained EFITs Show Drop in q On-Axis

• q drops faster on-axis in helicon shots than ECH references that had higher Te

– Changes in q can not be fully explained by heating – likely helicon current drive
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Helicon Power Increases Sawtooth Amplitude
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Direct Pickup Has Different Signature From Heating

• ECE channel 28 is polluted
when helicon operates

• Signatures of direct pickup:
– Rapid rise of Te response
– Very high coherence
– Wrong cross phase

Signal is in phase

• Other ECE channels do not
have these dramatic features

– Helps to rule out pickup
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