

Design of the Actively Cooled Ion Cyclotron Travelling Wave Array System for WEST

Julien Hillairet¹, Vincent Maquet², Riccardo Ragona³, Tristan Batal¹, Sylvain Burles¹, Zhaoxi Chen⁴, Laurent Colas¹, Rémi Dumont¹, Florian Dupin¹, Frédéric Durand¹, Frédéric Durodié², Nicolas Faure¹, Silvia Garitta¹, Lara Hijazi¹, Nicolas Lapcevic¹, Itziar Minondo¹, Raphaël Mitteau¹, Benoit Salamon¹, Benjamin Santraine¹,

 ¹ CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
² Laboratory for Plasma Physics, LPP-ERM/KMS, 1000 Brussels, Belgium
³ Technical University of Denmark, Department of Physics, 2800 Lyngby, Denmark
⁴ Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Current Ion Cyclotron launchers have several drawbacks

While ICRF has been proven to be a relevant tool in fusion experiments due to

- No density limit (high-density plasmas)
- Excellent absorption
- Proven experience in various scenarios (heating, wall-conditioning, assisted breakdown)
- Proven technology for CW and modest price/MW (compatible with high field experiments)

Current ICRF launchers suffer from drawbacks making them incompatible with fusion plants

- Low coupling conditions (large strap to fast-wave cut-off distance)
- Undesirable large voltages inside the launchers (Arcs)
- Metallic impurity production (RF sheaths)
- Low Reliability, Availability, Maintainability and Inspectability (RAMI)
- Large launcher volume and weight (a volume necessary for Tritium breeding)

Travelling Wave Array (TWA) launcher for ICRF

An innovative launcher concept for the ICRF

- Array of tuned straps
- RF current is induced by mutual coupling between elements
- No direct feeding of each element
- "Slow-wave" RF structure (exciting plasma fast-wave)
- Power *leaks* to the plasma

High-power mock-up successfully tested in 2021 in Vacuum

- 2 MW / 3s, 1.75 MW / 5s and 500 kW / 60s
 - Limited by RF generator only
- No pressure increase during long pulses
- Thermal & electrical responses as expected by modelling

WEST ICRH TWA

[Chiu 1984 <u>Nucl. Fus.</u> 24] [Moeller 1994 <u>AIP Conf. Proc</u> 289] [Ragona 2016 <u>Nucl. Fus.</u> 56]

RFPPC2025

[Ragona 2022 Nucl. Fus 62]

Demonstrating ICRF TWA launcher on WEST plasmas

Expected advantages of TWA launchers in a W-environment

- Increased RF coupling (k_{//} spectrum narrower and of lower value)
 - \rightarrow Plasma can be located further away from the launchers
- Lower electric field
 - \rightarrow Reduced RF sheaths and lower risk of arcs
- Enhanced directivity
 - → Reduced parasitic coaxial mode excitation (reduced parasitic uncoupled power/far sheaths)
- Provides operational simplicity (no tuning elements in vacuum)
 - \rightarrow Load-resilient launchers, low reflected power to RF sources
- Fusion power plant compatibility
 - \rightarrow Materials (stainless-steel), reliability, efficiency, reduced radial volume
- Large bandwidth launchers: allows to change RF frequency (power deposition) in real-time
 - \rightarrow Open new operational scenarios!

Reduced impurity production

Two possible TWA RF power feeding schemes

RFPPC2025

Direct feeding

- Simplest configuration, aims at demonstrating:
 - Coupling performance
 - Load resilience
 - RF Sheath minimization
 - Spectrum optimization
 - Assess high power performance
 - Test frequency changes and RT control

WEST ICRH TWA

Resonant Ring feeding

- Allows recirculation of uncoupled power
- Optimal power efficiency:

 $P_{rad} = P_{gen}$ when $P_{load} = 0$ (by tuning)

Relevant to fusion plant

WEST TWA Project — Staged Approach

Phase 1: Direct Feeding

- Actively cooled launchers (2 rows of straps)
- Each TWA launcher directly fed by one ICRF Generator
 - Uncoupled Power is transferred to dummy loads
- Performances and operational space characterization
- Walk-away ICRF system demonstration

Phase 2: Resonant Ring Feeding

- Uncoupled Power is recirculated back to the launchers
 - Larger ROG operation
 - Maximize Power Efficiency
- Requires additional ex-vessel components:
 - 4 x 3dB Hybrid
 - 4 x Phase Shifters (Line Stretchers)
 - Additional lines and bi-directional couplers

x2

Objectives of the WEST TWA launchers project

Two poloidal rows

- Replacing one ICRF launcher (Q4)
- CW/actively cooled launchers (WEST long pulses)
- Compatible with all WEST plasma scenarios (+ICWC)

Launchers RF *input* power design targets (2 rows)

- Direct feeding phase
 - 3.0 MW / 30 s (1.5 MW/ant)
 - 1.0 MW / CW (0.5 MW/ant)
- Resonant ring feeding phase (50% single pass coupled)
 - 6.0 MW / 30 s
 - 2.0 MW / CW
- Limited by plant/lines/feedthroughs
- Material: bare Stainless-Steel
 - No coating (fusion plant relevance)
- Eventually integrated inside a wall/blanket (WEST phase 3)

WEST ICRH TWA

WEST TWA Project – Deliverables Planning & Main Milestones

WEST TWA launchers operate within a ~10 MHz bandwith

- Main scenario D(H) @ 3.7 T: 55.5 MHz
 - Higher frequencies allow H(n=2) scenarios at half-field
- TWA Launchers have a ~ 10 MHz bandwidth (more on this later)

WEST ICRH TWA launchers bandwith specification

57 +/- 5 MHz

Single Pass Absorption (SPA) max. for toroidal modes [25-40]

For Hydrogen concentration between 3 to 10%

- EVE modelling show an optimum of the SPA for toroidal mode numbers (n_c) between 25 to 40
- As n_c increases, power damped by electron increases

WEST ICRH TWA

Larger n_c broadens the power deposition profile

Lower toroidal modes favoured: $n_c 25$ to 30 (k_{//0} 8 to 10 rad/m)

TWA launchers have a narrower radiated spectrum

$k_{/\!/0} \text{ specification} \rightarrow 8 \text{ straps} \rightarrow \text{narrower spectrum}$

- Reduced higher k_{//} components
 - \rightarrow Increase coupling
- Reduced lower k_{//} components
 - \rightarrow Less parasitic (coaxial) modes (\downarrow impurity)

Launcher design performed with state-of-art 3D RF modelling

- 3D inhomogeneous and anisotropic cold plasma
 - Using WEST equilibria and density profiles
 - Solved in HFSS
 - Absorption mimicked with artificial losses
- Optimized to minimize E-field (2.5 MV/m) at max power
 - Designed for Phase 2 in mind (< 3.5 MW input)</p>
 - Brings large margins for phase 1 (< 2 MW input)
 - Sensibility studies on capa. and assembly tolerances
 - Radiated spectrum minimized in [-k₀; k₀]
- RF Losses: ~6% Pin
 - Mostly located in box and straps (stainless-steel)

WEST TWA launchers are resilient and ~12 MHz bandwidth

- Launcher bandwidth: 50-62 MHz (SWR<1.2:1)</p>
- Launched spectrum barely sensible to ROG and mech.tol.
- Coupling for large Radial Outer Gap (ROG)

[R.Ragona, this conference] 13

On the requirement (or not) of a Faraday screen

Comparing RF fields from with/without horiz. bars

- No difference in the launcher's RF responses
- No difference in the radiated spectrum
- No large difference of fields:
 - Even small advantage in average and max fields for the shield-less antenna.
- Mechanical complexity (actively cooled)

More than 200% coupled power increase with TWA vs WEST classic antennas

Coupled power evaluated for a WEST-representative plasma

- Example for #56898 (500 kA/LSN)
 - Benchmarked with experimental data
 - ROG scan (shifted profiles)
- WEST classic antenna limited at 28 kV/915 A on capacitors (op.rules)
- TWA input power is fixed to 2 MW (generator limit)

TWA lower electric fields will reduce RF sheaths

For the same coupled power

- RF-sheath voltages are proportional to parallel electric field (E//)
 - RF-sheath voltages modelling successfully benchmarked for WEST classical antenna
- E// on the limiters surrounding the TWA are reduced by a factor up to 7 vs classic antenna

Devil in the (mechanical) details?

- Launchers initially envisaged between 2 ports
 - No more possible with the addition of the new ECRH system
 - Requires a cantilevered antenna
 - Requires proper design for disruption and VDE loads
- Available space inside port and vac. vessel limit components max size
 - and the max power with RR (but also constrained with feed-thoughts)
- Water cooling everything!
 - Always challenging despite experience with WEST ICRH CW antennas
- Assembly
 - Mount (and test) a maximum number of components outside the vessel
 - Minimize operations and risks inside the vacuum vessel

Exciting Experimental Programme Ahead!

Commissioning

Characterize the coupling and voltages vs plasma distance

Coupling physics

Code validation vs plasma equilibrium properties

Heating Efficiency and fast ion physics

- Effect of poloidal phase difference on heating efficiency
- Synergies between 2 RF frequency (top and bottom rows)
- Fast-ion losses characterization and possible mitigation techniques (frequency sweeping)
- Investigate turbulence control with TWA generated fast ions.
- Operation and synergy with other heating systems (LH, EC, classical IC antennas)

RF sheaths and Impurity production

- Compare impurity generated by classic WEST IC antenna vs TWA
- Investigate poloidal phasing effects
- ITER-relevant ROG operation
- Investigate SW propagation and LH power losses at high power

(Real-time) RF frequency change

- Power deposition control or sweeping
- Multi frequency operation: core heating + frequency sweeping to control sawtooth
- Assess CD capabilities

And probably much more!

Summary and next steps

- On-going design of 2 WEST TWA ICRF launchers
 - Objective is to test in 2026
- A project staged in two phases
 - Direct feeding
 - Resonant Ring feeding
- Launchers RF design complete
- Mechanical engineering on-going
 - Cantilevered launchers
 - CW operation = actively cooled!

Want to show your love for this project? It's possible!

https://travelling-wave-antenna.myspreadshop.ie/

<u>cea</u>