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Background
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• Parametric Instability (PI or PDI) is a common and important nonlinear wave-wave
interaction.

• PDIs result in a degradation of efficiency of H&CD and/or unexpected power
deposition. For example, PDIs at the edge may responsible for the failure of LHCD
in high density plasma.
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Background

3

• Earlier theories of parametric instability established in the 1970s,
mainly focusing on stimulated scattering in laser plasma [Rosenbluth 1972,
1973, White 1974, Cohen 1976, Chen 1977, Liu 1986]
ü Usually resonant decay with only quasilinear treatment
ü Convective instability is saturated by wavenumber mismatch due to plasma

inhomogeneity or finite width of the pump.
ü Usually absolute instability is excited in laser plasma, so other nonlinearities

should be involved



Background

4

• In fusion plasma, PDI is typically displaying as quasi-mode decay, such
as nonlinear ion landau damping （ion sound quasi-mode decay， ISQM）
or ion cyclotron harmonic quasi-mode decay （ICQM）.

• Difficulties are coming：
ü Quasilinear coupling is not enough （A fluid-kinetic hybrid approach [Liu 1986]

and a approach by integrating along an unperturbed orbit with pump field
[Porkolab 1974]）

ü Mismatch of the wavenumber due to plasma inhomogeneity cannot be given
by the linear dispersion relation

ü Therefore，both absolute instability and convective instability not properly
calculated



Coupling for quasi-mode decay
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QL-QL： QL-NL：

resonant decay：𝑓! ≫ 𝑓"! 𝑓!#! ~𝑓!#"!,quasi-mode decay：

[Liu PoP2019, Gao NF 2025]

𝑓$! ≫ 𝑓$"!



Fortunately, the coupling is mainly ES and fluid
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• Noted that kinetic effect in the linear 
response and EM effect in the linear 
dispersion relation of the pump 
should be kept.
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same explicit form as
from the fluid-kinetic 
hybrid approach
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• ISQM decay is usually suppressed by increasing plasma density
• ICQM decay is destabilized by increasing plasma density
• Both suppressed by plasma temperature and magnetic field
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Main results from the local model (with homogeneous wave and plasma)

LHW@JET [Z Gao 2025]1 3zN = 1 90d = °



From local to nonlocal：to characterize the inhomogeneity
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From local to nonlocal：to characterize the inhomogeneity
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Our approach: for quasi-mode decay (𝜀LF ≫ 1)



• Eliminating time, the nonlocal coupling equations turn to Schrödinger form:

• Dimensionless parameters: coordinate   , amplitude   , plasma 
inhomogeneity    , finite pump profile     , growth and/or damping rate    
(complex), coupling coefficient     

• absolute instability: not an initial value (natural boundary condition)
• convective instability: with initial value (Laplace transform          ):

Eigenvalue problem of the nonlocal equations
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On the absolute instability

• Absolute instability: PDI can’t be saturated by plasma inhomogeneity, the 
solutions are the superposition of time eigenmodes

• Estimating the threshold of a quasi-mode decay with a WKB analysis on 
the complex plane for finite pump profile:

– Due to exponential relation between coupling coefficient and damping rate, there is 
no absolute instability for quasi-mode decay in MCF plasma

– Back to resonant decay                 with weak damping [White 1974]
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[Chen and Gao, Communications in Theoretical Physics, 2025]



On the convective instability: resonant decay
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• Convective instability: PDIs are saturated by plasma inhomogeneity, 
the steady-state solution can be get by setting 

• The solutions are different in different scattering direction and the 
convective amplification factor are defined as:
– Same scattering direction (       )

– Opposite scattering direction (             )

• For resonant decay, similar results obtained as in Rosenbluth with a tiny
correction [Chen and Gao, PPCF 2025]

( ) 0, |j
j j tp x p

t
f

f f =

¶
= +

¶

0p =

1g LFg 0x xv v >

1g LFg 0x xv v <

( )
( )

1
0

lnA
A
f ¥

=

( )
( )

1
0

0
lnA

A
f

=



On the convective instability: quasi-mode decay
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• No opposite scattering in quasi-mode decay due to strong damping.
• For same-direction scattering, the convective amplification factor is,

– the PDI growth rate
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Nonlocal model around the SOL in tokamak

• Decay channels: ISQM+ICQM
• Plasma inhomogeneity exits in x-direction (radial)
• Finite pump profile exits mainly in z-direction (toroidal)
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1g 1gz yv v>>
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PIPERS code：ray tracing + PDI

• Energy conservation equations constrained by PDIs

– The pump damping and low frequency wave terms are omitted
– The initial value of PDI is the electrostatic thermal noise

• The convective amplification factor    is integrated along the trajectories 
of the sideband waves around the SOL
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Details in poster of Zikai Huang, Monday-22



An Example for LHCD experiment
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[parameter profiles
@JET Cesario 2006]



Spectrum evolution and power transfer
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Frequency sidebands and wavenumber broadening appears
But no significant power transfer occurs when PDI is weak



The density limit observed in simulation
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When the density increase above a limit, PDI become stronger and the pump is 
exhausted due to significant power transferring to sidebands



A theoretical scaling relation of the density limit
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• The simulation results
agree quite well with
the theoretical scaling
relation



A critical convective amplification factor may be found

• The hollow points indicate 
significant degradation of 
LHCD efficiency

• More targeted experiments
with precise diagnostics
required

20
Details in poster of Kunyu Chen, Tuesday-13



Discussion：LHCD on ITER

• According to the simulation results based on the SOL parameters 
simulated on ITER, the density is far from the density limit on ITER due 
to the high temperature around the SOL

• It may indicate that LHCD on ITER is still effective……
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[Carli 2018]



Summary
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• The PDI theory, especially the nonlocal theory of PDI saturation, is extended to 
adapt to the scenarios where non-resonant quasi-mode decays are dominant.

• A self-consistent modeling and simulation of LHWs in the SOL plasma by coupling 
the propagation of waves to the power transfer among waves by PDIs is performed.

• Frequency sidebands and wavenumber broadening appear due to PDIs and a cool 
and dense SOL leads to considerable PI growth rate and convective loss, which 
further results in the density limit of LHCD caused by PDIs 

• A theoretical scaling relation of the density limit, which shows agreement with
simulation and experimental results, which indicates that LHCD remains a 
promising method of driving plasma current for ITER and future fusion reactors.
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