Automated ICRF heating surrogate modeling via machine learning

Alvaro Sanchez-Villar (asvillar@pppl.gov)

Princeton Plasma Physics Laboratory

in collaboration with

N. Bertelli, S. Shiraiwa (PU PPPL), J. Miller (UCLA), Z. Bai, T. Perciano (LBNL), J. Hillairet (CEA-IRFM),

E. W. Bethel (SFSU), G. M. Wallace and J. C. Wright (MIT PSFC)

Hohenkammer, Germany, May 22, 2025

25th Topical Conference in Radio-Frequency Power in Plasmas

Full-wave codes unfeasible for applications as real-time control

- Ion cyclotron range of frequencies (ICRF) actuator modeling
 - Antenna impact on plasma response
- Full-wave codes codes:
 - computationally expensive
 - even using HPC
- Unfeasible simulation times for:
 - Specific scenario optimization
 - Inter-shot predictive modeling
 - Real-time control

May 22, 2025

- Machine Learning (ML) models
 Simplify and accelerate computation
- Is there an effective ML surrogate design for the ICRF heating problem?

Full-wave + ML enables robust real-time ICRF heating models

- Real-time capable
 ⇒ Inference time: O(µs-ms)
- Uncertainty quantification
 GPR (mean & standard deviation)
- Robust: can overcome challenging scenarios (incl. faulty-data/outliers)
- Automated: streamlined implementation and optimization

Two databases for flat-top operation of NSTX and WEST

G. Taylor et al. (2012) PoP **19** *J.* Bucalossi et al. (2022) NF **62**

- Heating schemes:
 - HHFW: $\omega > \Omega_{ci}$
 - IC minority: $\,\omega \sim \Omega_{ci}\,$
- Plasma species: D (D-H).
- Equilibriums are assumed to be fixed to:

NSTX - Shot 138506

Flat-top scenario plasma properties (e.g. temperature, density, etc) as :

$$T_{e}~=(T_{e0}-T_{e1})(1-
ho^{lpha})^{eta}+T_{e1}$$

0/1 -> core/edge
α and β : profile shape exponents

WEST - Shot 56898

May 22, 2025

Database generated to cover regimes measured experimentally

DDDI

PS

May 22, 2025

M. W. Gardner (1999) Atmospheric Env.

• Data sampling (~10⁴ cases each):

$$T_e = (T_{e0} - T_{e1})(1 -
ho^{lpha})^{eta} + T_{e1}$$

LHS provides a pseudorandom distribution across parameter space eliminating sampling statistical bias while ensuring high variance

Data is standardized, then analyzed, and curated

- Standardization of data using training data, and principal component analysis on WEST outputs → dimensionality reduction, improved profile inference time and accuracy.
- Exploratory analysis resulted in outlier identification in the NSTX database:

May 22, 2025

ML-algorithms selected to optimize performance

May 22, 2025

DDDI

cea • •

G. Wallace et al JPP 88.4 (2022): 895880401. ML-algorithms selected: Experience in the aroup on ML for GENRAY/CQL3D Random forest regressor (RFR). L. Breiman (2001) Machine Learning 45 Multi-layer perceptron regressor (MLP). M. Stein (1987) Technometrics **29** Simplified & robust implementation:scikit-learn learn Hyperparameters tuning: Gridsearch. **Random Forest Regressors Multilayer Perceptron** Methodical scanning. Hidden Input Output Dataset X Laver Laver Layer 5-fold cross-validation. Tree Tree 2 Prediction 1 Prediction 2 Prediction *i* mean()**Final prediction**

Summary of surrogates' performance metrics (NSTX)

- HHFW scenario regression accuracy increases from $R^2 = 0.51-0.75$ to $R^2 = 0.94-0.97$.
- **Training times** in the order of a minute.

May 22, 2025

• Average profile inference times $\mathcal{O}(\mu s)$ compared to $\mathcal{O}(min)$ featured by TORIC.

Target	Dataset	Method	$\mathrm{R_{tr}^2}$	$\overline{\mathrm{MSE}}_{\mathrm{tr}}$	$ar{t}_{ m tr}~[{ m s}]$	\mathbf{R}^2	$\overline{\mathrm{MSE}}$	$\bar{t}_{\rm I}$ [µs]
$egin{array}{c} P_{ m e} \ P_{ m e} \end{array}$	NSTX Original) NSTX (Filtered) NSTX Original) NSTX (Filtered)	RFR RFR MLP MLP	$\begin{array}{c} 0.96 \\ 0.99 \\ 0.75 \\ 0.97 \end{array}$	$\begin{array}{c} 1.4 \times 10^{-3} \\ 3.3 \times 10^{-6} \\ 8.2 \times 10^{-3} \\ 2.1 \times 10^{-5} \end{array}$	$ \begin{array}{r} 40 \\ 29 \\ 106 \\ 23 \end{array} $	$0.62 \\ 0.97 \\ 0.75 \\ 0.97$	$\begin{array}{c} 2.6 \times 10^{-3} \\ 1.8 \times 10^{-5} \\ 2.1 \times 10^{-3} \\ 2.1 \times 10^{-5} \end{array}$	$52 \\ 49 \\ 1 \\ 2$
$egin{array}{c} P_{ m D} \ P_{ m D} \ P_{ m D} \ P_{ m D} \ P_{ m D} \end{array}$	NSTX Original) NSTX (Filtered) NSTX Original) NSTX (Filtered)	RFR RFR MLP MLP	$0.94 \\ 0.99 \\ 0.54 \\ 0.96$	$\begin{array}{c} 6.9 \times 10^{-3} \\ 1.5 \times 10^{-5} \\ 5.6 \times 10^{-2} \\ 4.7 \times 10^{-5} \end{array}$	42 29 84 48	$0.51 \\ 0.90 \\ 0.51 \\ 0.94$	$\begin{array}{c} 6.1 \times 10^{-2} \\ 1.1 \times 10^{-4} \\ 7.1 \times 10^{-2} \\ 5.2 \times 10^{-5} \end{array}$	$51 \\ 54 \\ 3 \\ 4$

• Original: training and testing using NSTX database with outliers.

• Filtered: training and testing using NSTX database without outliers.

NSTX surrogates predict HHFW heating

PS

BERKELEY LAB

DDD

May 22, 2025

) 10

WEST surrogates predict IC minority heating

May 22, 2025

DDD

PS

FC

Outliers identified: how to solve heating in outlier scenarios?

DDD

Cea PS EC UCLA Alvaro Sanchez-Villar RFPPC2025, Hohenkammer, Germany

Outliers identified: how to solve heating in outlier scenarios?

May 22, 2025

DDD

Proposed approach: ML extrapolation

DDD

Proposed using RFR surrogates to overcome HHFW outliers

RFPPC2025, Hohenkammer, Germany

Proposed using RFR surrogates to overcome HHFW outliers

FLR effects in local hot dielectric tensor shown as superimposed

modulation over the FLR approx. coefficient

Verified outliers feature such sign reversal in WLC FLR correction

May 22, 2025

UCLA Alvaro Sanchez-Villar RFPPC2025, Hohenkammer, Germany

Numerical artifact related to the treatment of IBW in TORIC-HHFW

May 22, 2025

UCLA Alvaro Sanchez-Villar RFPPC2025, Hohenkammer, Germany

Proposed using RFR surrogates to overcome HHFW outliers

17

Surrogates closely predict HHFW heating in outlier regime

PPPI

UCLA Alvaro Sanchez-Villar RFPPC2025, Hohenkammer, Germany

18

GPR models can also extend to the HHFW outlier regime

May 22, 2025

BERKELEY LAE

DDD

Final models for HHFW at NSTX (including GPR)

May 22, 2025

BERKELEY LAE

PS

DDD

Automated Surrogate Modeling Generator Suite

- Streamlining end-to-end surrogate implementation
- Improved methodologies via AI/ML OS-software including:

• Automation of hyperparameter optimization (e.g. Bayesian)

BERKELEY

May 22, 2025

Automated surrogates for HHFW at NSTX

May 22, 2025

PPP

Demonstrated the workflow to automatically optimize and train the surrogates

ML surrogates for Ion Cyclotron Wall Conditioning at ITER

- Implementing ICWC surrogates for ITER
 - Work in progress
- PetraM 1D full-hot (R3 S. Shiraiwa)
 - LHR, SW/FW/IBW-> <u>high resolution</u>
 - Automated database generation
- TOMATOR1D refactoring (J. Miller-UCLA)
 - Refactoring and profiling
 - i. Improvement of 40% in run-time

PS

mm

May 22, 2025

-5

 $E_x[-]$

MUMPS:

Summary

Full-wave + ML enables robust real-time ICRF heating models

- Real-time capable O(μs-ms) & High-fidelity R²> 0.9
- Uncertainty quantification
 GPR (mean & standard deviation)
- Robust: can overcome challenging scenarios (incl. faulty-data/outliers)
- Automated: streamlined implementation and optimization

Future directions

May 22, 2025

- Our models are limited to specific scenarios; need to increase complexity further: impact of impurities, three-ion and other heating schemes, machines, equilibria, etc.
- Further modeling of HHFW scenarios relevant to NSTX/NSTX-U.
- Methodology being adapted to other Petra-M models (in particular ICWC):

This work has been funded by the U.S. Dept. of Energy, contract DE-AC02-09CH11466. Contact: asvillar@pppl.gov

Thank you for your attention! Any questions?

UNINE

Contact: <a>asvillar@pppl.gov

The authors A. Sanchez-Villar, N. Bertelli, and S. Shiraiwa thank R. Bilato and M. Brambilla for the insightful discussions on the TORIC code and the outlier scenarios found.