Gas, glass & light: 25+ years of photonic crystal fibres

Institutskolloquium

  • Datum: 08.06.2018
  • Uhrzeit: 10:30 - 12:00
  • Vortragende(r): Prof. Philip Russell
  • Max Planck Institute for the Science of Light
  • Raum: Hörsaal D2 (Übertragung nach HGW S1)
The idea for a new kind of optical glass fibre—photonic crystal fibre (PCF)—first emerged in 1991. The aim was to realise a fibre with a two-dimensional periodic array of microscopic features (typically hollow channels) running along its entire length. These would be able to corral light within a central hollow or solid core, permitting light and matter waves to be tightly confined over long distances while precisely controlling the dispersion. More than a quarter of a century later, PCF has led to a whole series of new developments, some of which are already are moving into real-world applications. Solid-core PCFs are routinely used to transform invisible infrared laser pulses into white light 10 million times brighter than an arc lamp, and form the basis of commercial supercontinuum sources. Twisted PCF creates optical vortices that carry orbital angular momentum, as well as providing an elegant means of providing circular birefringence and dichroism. Intense interactions between light and sound in solid-core PCF enable stable all-optical mode-locking of fibre lasers at a high harmonic (a few GHz) of their round-trip frequency. Single-ring hollow-core PCF, comprising a ring of thin-walled capillaries surrounding a central hollow core, guides over an extremely wide frequency range and, through pressure-adjustable dispersion, provides a simple means of compressing pulses down to single-cycle durations, as well as underpinning a range of unique and extremely bright sources of tunable deep and vacuum ultraviolet light.
Zur Redakteursansicht