Weitere Informationen

Fusionsanlage Wendelstein 7-X kurz vor dem ersten Plasma

Nächste Woche: Start mit Helium-Plasma geplant / Anfang 2016 sollen Plasmen aus Wasserstoff folgen

30. November 2015

Mit der Erzeugung des ersten Plasmas soll im Dezember 2015 die Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald planmäßig in Betrieb gehen. Die Experimente werden mit einem Plasma aus dem Edelgas Helium beginnen. Wendelstein 7-X, die weltweit größte und modernste Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen.


Wendelstein 7-X im Juni 2015: Noch laufen die Betriebsvorbereitungen. Bild vergrößern
Wendelstein 7-X im Juni 2015: Noch laufen die Betriebsvorbereitungen.

Nach neun Jahren Bauzeit und über einer Million Montagestunden wurde im April 2014 die Hauptmontage von Wendelstein 7-X abgeschlossen. Seither liefen die Vorbereitungen für den Betrieb. Nacheinander wurden alle technischen Systeme geprüft – das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen, das von ihnen erzeugte Magnetfeld, das Steuersystem sowie die Heizapparaturen und Messgeräte.

Das erste Plasma ist – vorbehaltlich des Eingangs der Betriebsgenehmigung – am 10. Dezember 2015 geplant. „Wir werden mit einem Plasma aus dem Edelgas Helium beginnen und erst im nächsten Jahr zu dem eigentlichen Untersuchungsobjekt wechseln, einem Wasserstoff-Plasma“, erläutert Projektleiter Professor Dr. Thomas Klinger: „Denn mit Helium ist der Plasmazustand leichter zu erreichen. Außerdem können wir mit Helium-Plasmen die Oberfläche des Plasmagefäßes reinigen“. Das erste Wasserstoff-Plasma soll zu Anfang des nächsten Jahres folgen.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Beide Anlagentypen werden im IPP untersucht: In Garching läuft der Tokamak ASDEX Upgrade, in Greifswald der Stellarator Wendelstein 7-X.    

Gegenwärtig traut man nur einem Tokamak – dem internationalen Testreaktor ITER, der in weltweiter Zusammenarbeit zurzeit in Cadarache aufgebaut wird – ein energielieferndes Plasma zu. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, wird noch keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll die Qualität des Plasmaeinschlusses erstmals der eines Tokamaks ebenbürtig werden. Und mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen, die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwändige Zusatzmaßnahmen lediglich in Pulsen arbeiten.

Die Montage von Wendelstein 7-X begann im April 2005: Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehnjährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungstemperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschalten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig hält im Inneren des Plasmagefäßes das Forschungsobjekt der Wissenschaftler in Schwebe, das 30 Kubikmeter füllende ultra-dünne Plasma.

Die von Bund, Land und EU getragenen Investitionskosten für Wendelstein 7-X beliefen sich auf 370 Millionen Euro. Die Bauteile fertigten Firmen in ganz Europa; Aufträge im Wert von weit über 70 Millionen Euro gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. So trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Messgeräte und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Den Einbau übernahmen Spezialisten der Polnischen Akademie der Wissenschaften in Krakau. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen u.a. mit magnetischen Zusatzspulen und  Messgeräten zur Ausrüstung von Wendelstein 7-X bei.                          

Isabella Milch

 
loading content