Download

Weitere Informationen

Max-Planck-Institut für Plasmaphysik
Abteilung Presse- und Öffentlichkeitsarbeit
Telefon:+49 89 3299-2607Fax:+49 89 3299-2622
E-Mail:info@...

Wendelstein 7-X: Aufrüstung nach erfolgreicher erster Experimentierrunde

Ertragreiches wissenschaftliches Programm / Ausbau im Plasmagefäß ist in vollem Gange

6. Juli 2016

Nach rund 2200 Plasma-Pulsen seit Betriebsbeginn im Dezember 2015 ging die erste Experimentierkampagne an der Forschungsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald im März erfolgreich zu Ende. Zurzeit laufen Umbauten im Plasmagefäß, um die Anlage fit für höhere Heizleistung und längere Pulse zu machen. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen.


Blick in das Plasmagefäß: Auf wärme­ableitende Platten aus Kupfer-Chrom-Zirkon, die bereits vor der ersten Experimentierrunde montiert wurden, werden in den kommenden Wochen Graphitkacheln gesetzt. Bild vergrößern
Blick in das Plasmagefäß: Auf wärme­ableitende Platten aus Kupfer-Chrom-Zirkon, die bereits vor der ersten Experimentierrunde montiert wurden, werden in den kommenden Wochen Graphitkacheln gesetzt. [weniger]

Seit Betriebsstart im Dezember 2015 wurden in Wendelstein 7-X kontinuierlich Plasmen erzeugt – zunächst aus Heliumgas, ab Februar 2016 aus Wasserstoff. Rund 2200-mal verwandelte die Mikrowellenheizung eine winzige Menge Gas in ein ultradünnes, extrem heißes Plasma: Dabei lösen sich die Elektronen von den Kernen der Helium- oder Wasserstoffatome. Im magnetischen Käfig von Wendelstein 7-X eingeschlossen, schweben die geladenen Teilchen nahezu berührungsfrei vor den Wänden der Plasmakammer.

„Mit den Ergebnissen der ersten Experimentierkampagne sind wir mehr als zufrieden“, sagt Projektleiter Professor Thomas Klinger. Lagen die erreichbaren Pulsdauern der Wasserstoff-Plasmen zu Anfang bei einer halben Sekunde, wurden am Ende Pulsdauern von sechs Sekunden erreicht. Die Plasmen mit den höchsten Temperaturen wurden bei vier Megawatt Mikrowellen-Heizleistung für die Dauer von einer Sekunde erzielt: Bei mittleren Plasmadichten konnten die Physiker Temperaturen von 100 Millionen Grad Celsius für die Plasmaelektronen messen sowie 10 Millionen Grad für die Ionen. „Damit wurde viel mehr erreicht, als unsere eher vorsichtigen Vorhersagen erhoffen ließen“, so Thomas Klinger.

Die Struktur und die Einschlusseigenschaften des neuartigen Magnetfeldes erwiesen sich überdies in den ersten Prüfungen so gut wie erwartet. Zu weiteren Physikuntersuchungen – zum Beispiel zur Wärmelastverteilung an den Wandblenden oder zum Einfluss der externen Trimmspulen – kamen technische Entladungen zum Reinigen des Plasmagefäßes oder zur Prüfung der Maschinensysteme, d.h. Magnete, Kälteanlage, Mikrowellenheizung und Maschinensteuerung.

Rund 6200 unterschiedlich geformte Wandkacheln aus Kohlenstoff werden in das Plasma­­gefäß eingebaut. Bild vergrößern
Rund 6200 unterschiedlich geformte Wandkacheln aus Kohlenstoff werden in das Plasma­­gefäß eingebaut.

Am 10. März wurden plangemäß die Experimente beendet. Inzwischen ist das Plasmagefäß wieder geöffnet, um gut 6000 Kohlenstoffkacheln zum Schutz der Gefäßwände sowie den sogenannten „Divertor“ einzubauen: In zehn breiten Streifen an der Wand des Plasmagefäßes sollen seine Kacheln der verwundenen Kontur des Plasmarandes folgen. Am Rand des Plasmaringes laufen nämlich Energie und Teilchen auf begrenzte Partien der Gefäßwand. Werden diese Wandbereiche durch spezielle Prallplatten geschützt, können die auftreffenden Teilchen zusammen mit unerwünschten Verunreinigungen neutralisiert und abgepumpt werden. Der Divertor ist damit ein wichtiges Werkzeug, Verunreinigung und Dichte des Plasmas zu kontrollieren.

Entworfen und gefertigt wurden die Wandelemente und ihre Trägerstrukturen im IPP in Garching in Kooperation mit externen Firmen. Der Einbau der 6200 unterschiedlich geformten Wandkacheln und zehn Divertormodule muss bis auf ein bis zwei Millimeter genau geschehen, was in dem asymmetrischen Plasmagefäß recht heikel ist: „Nach genauer Vermessung der Innenwand vergleichen wir deshalb mit einem numerischen Verfahren die Wandmaße mit den Kachelabmessungen und arbeiten, wo nötig, die Kacheln mit einer computergesteuerten Fräse nach“, erläutert Mathias Müller von den Technischen Diensten in Greifswald.

Bis Mitte 2017 wird die Montage dauern: Danach ist Wendelstein 7-X mit verkleideter Wand fit für Hochleistungsplasmen mit Heizleistungen bis zu acht Megawatt und zehn Sekunden Dauer. Nach gründlicher Prüfung der Divertor-Funktion sollen in späteren Ausbauten die Graphitkacheln durch kohlenstofffaserverstärkte Kohlenstoff-Elemente ersetzt werden, die zusätzlich wassergekühlt sind. Damit werden – in etwa vier Jahren – bis zu 30 Minuten lange Entladungen möglich, in denen bei einer Heizleistung von 10 Megawatt überprüft werden kann, ob Wendelstein 7-X auch dauerhaft seine Optimierungsziele erfüllt.


Hintergrund:

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer.

Den magnetischen Käfig von Wendelstein 7-X erzeugt ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen. Obwohl Wendelstein 7-X keine Energie erzeugen wird, soll die Anlage beweisen, dass Stellaratoren kraftwerks­tauglich sind. Mit Wendelstein 7-X soll die Qualität des Plasmaeinschlusses in einem Stellarator erstmals das Niveau der konkurrierenden Anlagen vom Typ Tokamak erreichen. In 30 Minuten langen Entladungen soll die Anlage zudem das wesentliche Plus der Stellaratoren vorführen, die Fähigkeit zum Dauerbetrieb.

Isabella Milch

 
Zur Redakteursansicht
loading content