Schrödinger-Preis für IPP-Wissenschaftler

Zehnmal heißer als das Sonneninnere / neuartige Heizung für Fusionstestreaktor ITER

21. Juli 2006

Was in der Sonne bei nur sechs Millionen Grad Celsius schon seit Ewigkeiten funktioniert, verlangt auf Erden große Anstrengungen: Hier ist die Kernfusion, bei der Wasserstoffatome zu Helium verschmelzen und dabei Energie freisetzen, viel schwerer zu starten. Der Brennstoff in einem späteren Fusionskraftwerk – ein Wasserstoff-Plasma – muss zunächst auf über 100 Millionen Grad aufgeheizt werden. Dies gelingt zum Beispiel durch Einschießen schneller Wasserstoff-Teilchen in das Plasma. Wissenschaftler des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching haben eine solche Heizung für die extremen Anforderungen des Testreaktors ITER weiterentwickelt

Die Preisträger (v. l.): Dr. Ursel Fantz, Dr. Hans-Dieter Falter, Dr. Eckehart Speth, Dr. Peter Franzen und Dr. Werner Kraus.

Dafür zeichnet die Helmholtz-Gemeinschaft Dr. Eckehart Speth, Dr. Hans-Dieter Falter, Dr. Peter Franzen, Dr. habil. Ursel Fantz und Dr. Werner Kraus mit dem Erwin Schrödinger-Preis 2006 aus. Die mit 50.000 Euro dotierte Auszeichnung wird jährlich für herausragende interdisziplinäre Forschung vergeben.

Die internationale Testanlage ITER (lat. „der Weg“), deren Bau in Cadarache/Südfrankreich kürzlich beschlossen wurde, ist der nächste große Schritt der weltweiten Fusionsforschung. Mit 500 Megawatt erzeugter Fusionsleistung soll ITER erstmals zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ziel ist es, ein Kraftwerk zu entwickeln, das – ähnlich wie die Sonne – aus der Verschmelzung von Atomkernen Energie gewinnt. Dazu muss der Brennstoff – ein dünnes ionisiertes Wasserstoffgas, ein „Plasma“ – berührungsfrei in einem Magnetfeldkäfig eingeschlossen und bis zum Zünden der Fusionsreaktionen auf hohe Temperaturen aufgeheizt werden. Etwa zur Hälfte soll das ITER-Plasma per „Neutralteilchen-Heizung“ geheizt werden: Schnelle Wasserstoffatome, die in das Plasma eingeschossen werden, geben beim Zusammenstoßen mit den Plasmateilchen ihre Energie ab. Heutige Anlagen erreichen so auf Knopfdruck ein Mehrfaches der Sonnentemperatur.

Um in diesen Heizapparaturen Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen – als positive oder negative Ionen – für elektrische Kräfte greifbar werden. In den bisherigen Heizanlagen werden ausschließlich positiv geladene Ionen genutzt: Neutralem Wasserstoffgas werden dazu die Elektronen entzogen, die positiv geladenen Wasserstoffionen werden abgesaugt und beschleunigt. Vor dem Einschießen in das Fusionsplasma muss der Ionenstrahl jedoch wieder neutralisiert werden, weil geladene Teilchen durch das Magnetfeld des Plasmakäfigs abgelenkt würden: Dazu durchlaufen die Ionen einen Gasvorhang. Hier nehmen die Ionen das fehlende Elektron wieder auf und schießen als schnelle Neutrale in das Plasma.

Die Ionenquelle von außen

Mit ITER kommen nun neue Anforderungen auf dieses bewährte Verfahren zu: Zum Beispiel müssen für die Großanlage ITER die Teilchen noch drei- bis viermal schneller sein als bisher, damit sie tief genug in das Plasma hinein fliegen können. Deshalb kann man nicht mehr mit positiv geladenen Ionen arbeiten. Denn unglücklicherweise lassen sie sich umso schlechter neutralisieren, je schneller sie sind – bei den für ITER gewünschten Geschwindigkeiten von 9000 Kilometern pro Sekunde fast gar nicht mehr. Für ITER muss man daher zu negativ geladenen Ionen übergehen, die auch bei hohen Geschwindigkeiten gut neutralisierbar sind. Sie lassen sich allerdings wesentlich schwieriger handhaben als positive Ionen: Das zusätzliche Elektron, das für die negative Ladung der Partikel verantwortlich ist, ist nur locker gebunden und entsprechend leicht wieder zu verlieren.

Um die fragilen Objekte für ITER herzustellen, sind so genannte Hochfrequenz-Plasmaquellen besonders geeignet. Aufbauend auf Vorarbeiten an der Universität Gießen wurde die neuartige Ionenquelle im IPP entwickelt und ist seit 1995 am IPP-Experiment ASDEX Upgrade in Betrieb – allerdings für positive Ionen. Seit 2002 arbeiten Dr. Eckehart Speth und seine Mitarbeiter im IPP daran, die neue Strahlquelle für negative Ionen weiterzuentwickeln. Dies geschah gemeinsam mit der Universität Augsburg. Dort arbeitete Dr. Ursel Fantz zusammen mit ihren Mitarbeitern an anspruchsvollen Diagnostik- und Modellierungsmethoden für das gemeinsame Projekt.

Ihren Namen hat die neuartige Quelle von einer Hochfrequenzwelle, die in Wasserstoffgas eingestrahlt wird und dabei einen Teil der Wasserstoffatome ionisiert. Das entstehende kalte Plasma, eine Mischung neutraler Atome, negativer Elektronen und positiver Ionen, strömt in die eigentliche Strahlquelle, auf deren Innenwände und auf eine erste gitterförmige Elektrode. Ist deren Oberfläche mit geeignetem Material belegt, etwa mit Cäsium, dann können dort von den Plasmateilchen Elektronen aufgenommen werden – es entstehen die gewünschten negativen Wasserstoffionen. Nachdem die Wissenschaftler die komplizierte Dynamik der Cäsium-Verteilung auf den Wänden ergründet hatten, kann es hier mittlerweile kontinuierlich von einem kleinen Ofen als ultradünne, etwa eine Atomlage starke Schicht aufgedampft werden.

Die erzeugten negativen Ionen in der Nähe des Gitters können nun aus der Strahlquelle heraus gelenkt werden. Sie werden anschließend durch das elektrische Feld eines zweiten Gitters erfasst, zum Strahl gebündelt und mit einem dritten Gitter weiter beschleunigt. Mit den bisherigen Ergebnissen – teilweise Weltrekord – hat die Hochfrequenz-Quelle des IPP bereits gute Chancen, bei ITER zum Zuge zu kommen. Für eine endgültige Beurteilung muss noch die Übertragbarkeit der Technologie auf ITER-Größe gezeigt werden. Die Entscheidung über eine Verwendung bei ITER wird für Mitte 2007 erwartet. Aber auch auf anderen Gebieten könnte die neue Ionenquelle Anwendung finden, zum Beispiel in Beschleunigern oder zur Herstellung großflächiger Plasmen für die industrielle Nutzung.

Isabella Milch

Zur Redakteursansicht