Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom Ort: IPP Garching

The physics basis for a Q≈1 high-field, compact, axisymmetric mirror*

Institutskolloquium

Ignition and the Path Towards an Inertial Fusion Energy Future

Institutskolloquium
  • Datum: 29.06.2023
  • Uhrzeit: 10:30 - 12:00
  • Vortragende: Dr. Tammy Ma
  • Tammy Ma is the Lead for the Inertial Fusion Energy (IFE) Institutional Initiative at Lawrence Livermore National Laboratory (LLNL) in the U.S. She was a member of the team achieving burning plasma, followed by fusion ignition in December 2022 at the National Ignition Facility, demonstrating more energy gain from fusion than the laser energy used to drive it. She is the recipient of a Presidential Early Career Award for Science and Engineering (PECASE) and currently sits on the Fusion Energy Sciences Advisory Committee (FESAC). She also chaired the 2022 DOE Basic Research Needs Workshop and Report in Inertial Fusion Energy and served on the German Expert Panel that authored the Memorandum on Laser Inertial Fusion Energy.
  • Ort: IPP Garching
  • Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom
  • Gastgeber: IPP
  • Kontakt: karl.krieger@ipp.mpg.de

Alternative Divertor Configurations in the New Upper Divertor of ASDEX Upgrade

Institutskolloquium
  • Datum: 14.07.2023
  • Uhrzeit: 10:30 - 12:00
  • Vortragender: Dr. Tilmann Lunt
  • Tilmann Lunt is a research scientist in the Plasma Edge and Wall Department (E2M) at IPP Garching. His scientific interests include alternative divertor configurations and the physics of the plasma edge, in particular the effects of 3D magnetic field perturbations. He is also responsible for the visual and near-infrared camera systems of the ASDEX Upgrade experiment.
  • Ort: IPP Garching
  • Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom
  • Gastgeber: IPP
  • Kontakt: karl.krieger@ipp.mpg.de

Where do most black holes in the Universe come from?

Institutskolloquium
  • Datum: 01.12.2023
  • Uhrzeit: 10:30 - 12:00
  • Vortragender: Prof. Dr. Hans-Walter Rix
  • Hans-Walter Rix is director at the Max-Planck-Institute for Astronomy (MPIA) and professor at the University of Heidelberg faculty for physics and astronomy. In his thesis work with Simon White he figured out that most large elliptical galaxies also have sizable stellar disks, and hence must have a different formation history than thought at the time. He also had the opportunity to work with Craig Hogan on gravitational lensing, with Marcia and George Rieke on infrared imaging and spectroscopy, and with Rob Kennicutt. He then went on to the Institute for Advanced Studies in Princeton, working on some of the very first Hubble Space Telescope data on gravitational lensing and giving in to the numerous, exciting scientific diversions that Princeton has to offer. After a year at MPA, Garching and three years on the faculty at the University of Arizona, he came to MPIA late 1998. In the first five years, his focus was on galaxy evolution, helping to draw up a comprehensive picture of what the population of galaxies looked like when the Universe was half its age. In recent years he has focused his research on our very own galaxy, the Milky Way, because the intricate detail in which it can be studied, should lead us to a better understanding of galaxy formation as a whole. As of 2016, the Gaia space mission along with other vast spectroscopic surveys of stars, and then Hubble's successor James Webb Space Telescope are the next beacons on his science path.
  • Ort: IPP Garching
  • Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom
  • Gastgeber: IPP
  • Kontakt: karl.krieger@ipp.mpg.de

Fusion start-ups - A broad range of alternatives

Institutskolloquium

The New Approach to the European Roadmap to Fusion Energy

Institutskolloquium
  • Datum: 21.02.2024
  • Uhrzeit: 10:30 - 12:00
  • Vortragender: Prof. Dr. Ambrogio Fasoli
  • Ambrogio Fasoli is Programme Manager (CEO) of the European Consortium for Fusion Energy, EUROfusion, Director of the Swiss Plasma Centre at the École Polytechnique Fédérale de Lausanne (EPFL) and Delegate to the Provost of the EPFL. Ambrogio Fasoli, an honorary member of the American Physical Society, studied at the University of Milan and obtained his doctorate at the EPFL. After conducting experiments on the European JET tokamak in the United Kingdom, he became a professor at MIT in the United States, where he worked from 1997 to 2001, before being appointed professor at EPFL. From 2014 to 2020, he was editor-in-chief of the journal Nuclear Fusion of the International Atomic Energy Agency (IAEA).
  • Ort: IPP Garching
  • Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom
  • Gastgeber: IPP
  • Kontakt: karl.krieger@ipp.mpg.de

Aspects and problems of tritium in the biosphere

Institutskolloquium
  • Datum: 07.06.2024
  • Uhrzeit: 10:30 - 12:00
  • Vortragender: Prof. Dr. Clemens Walther
  • Clemens Walther is Professor at the Leibniz University Hannover, Germany and Head of the Institute of Radioecology and Radiation Protection. He is president of the German-Swiss Society for Radiation Protection and Head of the Steering Board of the Competence Center Radiation Research (KVSF). Since 2015 he is a member of the German Commission for Radiation Protection. Prof. Walther’s past appointments include being Dean of the Faculty of Mathematics and Physics (2019–2021), Chair of the Nuclear Chemistry Section of the German Chemical Society (2019-2022), Head of the European Network on Nuclear and Radiochemistry Education and Training (2016–2022), Member of the extended governing board of the German Society for Mass Spectrometry (DGMS) (2012–2015) and Head of the mass spectrometry division of the German Physical Society (DPG) (2012–2015).
  • Ort: IPP Garching
  • Raum: Arnulf-Schlüter Lecture Hall in Building D2 and Zoom
  • Gastgeber: IPP
  • Kontakt: karl.krieger@ipp.mpg.de
Tritium is a natural cosmogenic nuclide and omnipresent in natural waterbodys. However, man made nuclear activities have strongly increased the global inventory. The talk will cover natural and anthropogenic sources, the radioecological modelling of tritium migration in the environment and dose assessment to humans. Tritium will be compared to other radionuclides with respect to peculiarities of uptake and biological half life in the human body. Specific damage to tissue is rather low, due to its limited beta decay energy. This leads to high exemption limits for handling and high specific activities for clearance and discharge during the operation of nuclear facilities. Regulatory limits and dose coefficients as suggested by WHO, IAEA and ICRP as well as German legislation are discussed. Finally, the discharge of contaminated water from the Fukushima Daichi site will radiologically be set into perspective. [mehr]
Zur Redakteursansicht